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ABSTRACT

(Distribution Limitation Statement No. 2)

The utility (accuracy, speed, etc.) of a hydrocode in solving the equations of I
hydrodynamics may be estimated by applying the hydrocode test problems described
in this report. Given the estimations of the utilities of a pair of hydrocodes,we may decide which is the preferred hydrocode to use. The hydrocode test-o,-

problems described in this report have solutions &rhich are known exactly. Seven -

hydrocode test problems involving shocks, rarefactions, and interactions are
investigated and applied to a typical hydrocode, AFWL's PUFF.
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SECTION I

iNTRODUCTION

1. THE HYDROCODE UTILITY PROBLEM

iHydrocodes are computer programs used to solve the equations of hydro-

dynamics. By "equations of hydrodynamics" we mean the equations arising from

the conservation laws and thermodynam - lawr. (See Appendix I for a detailed

discussion of these equations.)

in particular, we shall restrict the hydrocodes in this report to be digital

computer programs of finite .difference schemes. We shall also restrict the

;v: discussion in this report to one-dimensional linear geometry hydrocodes. At

the end of this section we shall give an example of a typical hydrocode. The

purpose of this report is to present the development of a method of detein:Lng

the utility (accuracy, speed, etc.) of a hydrocode.

Bydrocode solutions to the equations of hydrodynamics usually differ from

the exact zolutions. If the hydrocode rolutions converge, this difference may

be reduced by refining the -meah of the finite difference scheme used in the

hqdrocode. Thus, if the hydrocode solutions converge, the accuracy if the

hydrocode soluitions is directly related to the computational effort.

However, we have no proof of convergence of these schemes except when the

solution is assumed -,muoth between a priori known shock positions.* But the

problems of interest involve shocks whose positions are not a priori known.

Therefore, :n the problems of interest, we have no proof of convergence.

The accuracy of the hydrocode zolution is not necessarily dirertly related

to the computational effcrt. That is, the mesh (space differences and time

differences) might be refined and yet the accuracy might not be improved.

Moreover, even if convergence were proved for a scheme, it btill might not be

of any practical use because the convergence might be too slow. That is, th

computational effort required might be too much for practic31 purposes.

*Lax and Keller, The Initial and Mixed ,nitial and Boundary Value Problem for

59yperbolic Systems, Los Alamos Report IAMS-3.205, 7951.

1
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For the hydrocode to be useful, the error should be small and the computa-

tional effort must be within the capacity of the computer in relation to both

memory and computation time. We wiil measure the computational effort by the

running time required on the Air Force Weapons Laboratory's CDC 6600 computer.

It is unfortunate that this running time also depends somewhat on the other

programs which are being run in the 66u0 because of its parallel processlng.

However, this was the only computing time number available.

When one uses a hydrocode to predict some phenomenon, he would like to

know how accurate he can expect the hydrocode's prediction to be. That is, lie

would like to have a number or numbers which indicate to him what the deviations

between the hydrocode numbers and the observed data will be. One place for

deviations to enter is between the mathemAtical model of the phenomenon and

the phenomenon itself. This report does not discuss that problem. (However,

Appendix I does investigate the mathematical model.)

The problem we are trying to de!al with is the deviation between the mathe-

matical model (represented by the equations arising from the conservation laws

and thermodynamic laws) and the hydrocode model (that is, the computed approxi-

mation to the solution of the equations arising from the conservation and

thermodynamic laws). Therefore, we are going to call the solution to the

mathematical model the "exact: solution." We therefore want some number or

numbers that indicate the "distance" between the hydrocode solution and the

exact solution. The numbers will be like the maximum deviation between the

exact pressure profile and the hydrocode's pressure profile, or the sum of the

squares of the pressure deviations, etc. (See Appendix III for details on the

error numbers.) These numbers will then give a measure of the utility of a

hydrocode for a certain type of problem.

Hence, we developed a series of hydrocode test problems which are represent-

ative of the basic types of flow encountered in hydrodynamic problems and whose

solutions are known exactly. By basic types of flow we- mean flows including

shocks, rarefactions, etc. (For details, see Section II.) Then we applied

the hydrocode test problems to a typical hydrocode to give an example of the

procedure that we have developed to measure the utility of a hydrocode.

2
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2. AN EXAMPLE OF A TYPICAL HYDROCODE

As an example of the type of hydrocode that we are referring to, we shall

present a sketch of AFWL's PUFF hydrocode which is described in detail in

AFWL-TR-66-48.

PUFF is a modification of the hydrocode proposed by von Neumann and Richt-

myer in their March 1950 Journal of Applied Physics paper. This paper intro-

duced the notion of artificial viscosity. The equations they arrived at from

the conservation laws, thermodynamic laws, and the introduction of an artificial

viscosity were the following:

Consider a one-dimensional fluid motion. Let x be
the Lagrangian coordinate, and X=X(x,t) be the Eulerian
coordinate. That is, X(x,t) gives the position, at
time t, of a fluid element that was initially at posi-
tion x.

Let p (x) be the initial density, so that V and v,
given by

V(x,t) WO/= (1)

and

v(xt) = ax/at, (2)

are the specific volume and fluid velocity, respectively.

The equations of motion.. of energy, and of continuity
are:

P o(v/t) = (9/x)(p+q), (3)

(4s/3t) + (p+q)(3V/9t) = 0, (4)

and

PO=/0- va) (5)

In these equations, p = p(x,t) is the ordinary (or
static) fluid pressure and e = e(x,t) is the internal
energy per unit mass. A connection between cp,V is
established by an equation of state, which will be
assumed, for the purpose of illustration, to have the
form

e = (pV)/(y-l) (6)

which holds, for example, in the case of a perfect gas.

2' 3
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y is a constant >1.

It is supposed that the dissipative mechanism can be
represented by the additional term q in the pressure,
which is assumed to be negligibly small, except in the
neighborhood of the shock.

The original q (artificial viscosity) was

.1 2

q -- 0 CA a-y I (7N.(..Vr 67 at

Using (5), it can also be written
2

q -- X au Ix !x (8)
V axIax1

where c is a dimensionless constant near 1 and Ax is the interval length used

in the numerical integration of the hydrodynamic equations. PUFF's q is a

modification of this.

Now we will describe PUFF's difference scheme to solve the foregoing equa-

tions.

4 Let the points of a rectangular network with spacings Ax and At be denoted

by x, tn (I = 0,1,2, ..., L; n = 0,1,2, ... ) We shall also have occasion

to deal with intermediate points, having coordinates

1/(x tn+l/2  ftn+ltn).

To facilitate the writing, we introduce abbreviations such as

V+I t i etc.

The difference equations Pith which PUFF approximates the differeatial

equations (1) through (8) are the following:
n1/ n-1/2 n _n-1 /2 n n-1/2

U zI 2  - U Xl P + 12 + q +i/2 - P + /2 - /2 (9)

0 At

4
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is PUFF's difference approximation to

at ax (10)

xn.Al n

At z

is PUFF's difference approximation to

ax
at

Y, -1/2 n+1 . +l
- I

is PUFF's difference approximation to

Po ax v axP -. or V- X
0

because

1

Now let

,. /2 n+1/2
A U - UI -1

Then PUM's q is

n+ln+I/2 6U C2- C. Cs). AU. Lp - 1/ 2 +  '1-1/2)  (12)
Z£-i/2 0 U 2
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0l

where C 1.8, C1 = 0.25, Cs isothermal sound speed at time tn-,1 2 and

position k-1/2. That is,

C2 dPI
s do const.

Then PUFF simultaneously solves

n+l n _n+l n+1/2 n n-1/2

0 e £-1/2 - 'k-1/2 + Pk-1/2 + q£-i~/ 2 - '-1/2 - qk-i2 AU
At 2 PoAx

(13)

and

n+ n l n+l
P P -i/2' (14)

(the equation of state).

The difference equation is the result of differencing

0 + (P+q) 1o DU

which results from

: W aV V 1 DU,.0 -t + (P+q) Tt and -- I

PUFF's method of solution is this: Suppose that all quantities are known

for superscript n or n-1/2 (tl.;.s is referred to ao being at cycle n); compute

Un /  for each Y from (9), then compute X for each Z from (1); next compute
f e+l oeacfo(n+1); nt p

P£-I/2 or each £ frLm (11), then compute q for each 2 from (12); next
Zo12 2n+l n~l

compute e Zl/21 k-1/2 for each 2 by simultaneously solving (13) and (14). At

rhis point, all variables have been advanced up to cycle n+l. Next, PUFF does

its time-step computation to compute the next At. The time-step computation

is based on a modification of the criterion developed hy Courant, Friedrichs,

6
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and Levy in their 1928 MATH. _NNALEN paper. The physical interpretation of

this criterion is that the time step should be restricted so that a sound

signal cannot travel across more than one zone in a time step. That is,
n t n ncn nAt < AX., for all £, where C is the sound speed in the £th zone at cycle
n, At is the nth time step, and AX is the width of the fth zone at cycle n.

Thus, At:n is usually defined as

Atn - m rin -

£ n

where

1 0<0<1

0 is called the CFL number. PUFF uses a modification of this (see AFWL-TR-
67-48). For more details about the CFL criterion, see Appendix II

f17
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SECTION II

DESCRIPTIONS, DERIVATIONS, AND DETAILS

To make t:his section easier to read, we include a discussion of the format

* used in presenting the hydrocode test problems. Seven hydrocode test problems

are considered. The problems discussed in this report are labeled SCTP for

Slab Code Test Problems. The "Slab" refers to the geometry, i.e., one-

dimensional linear.

The labeling is further modified to indicate which problem, i.e., SCTP-I,

SCTP-II, ..., SCTP-VII. The consideration of each problem is arranged in the

following way:

n. HYDROCODE TEST PROBLE14 SCTP-n

a. Description of Problem

Here we give a graphical and verbal description of the problem.

b. Derivation of Solution

Under this heading the exact mathematical solution is derived.

c. Application as a Test Problem

Now we get down to the numerous details and difficulties of

applying the problem to a hydrocode, that is, how one inputs

the initial and boundary values for various codes. The first

division in variety of codes is whether the code is Eulerian

or Lagrangian in its formulation of the hydrodynamics equa-

tions. Therefore, we introduce the following subdivtsions.

(1) Eulerian Input

(a) Initial values

(b) Boundary values
4

(2) Lagrangian Input

(a) Initial values

(b) Boundary values

8
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In the foregoing subdivisions we describe how the hydrocode test problems
may be introduced into either an Eulerian or a Lagrangian hydrocode. That is,

we give the specific processes fo inputting the initial values and the

boundary values.

Up to this point we have not specified any numbers for the initial
pressures, densities, etc. These numbers are introduced in the following

subdivision.

- (3) Numerical Values for SCTP-n

Here we give the initial and boundary value numbers which

-)are used for both Eulerian and Lagrangian hydrocodes.

Also, we give the resulting numbers which occur in the

solution.

Next, we discuss what is to be expected from these problems when they are

applied as hydrocode test problems. This is done under the heading

(4) Comments on the Computer Solution

Under this heading we have two subdivisions:

ji(a) General comments

In this paragraph, we give a discussion of what can
be said about the hydrocode test problems behavior

in general. That is, how long the solution is as

described without altering the boundary values,

what mistakes a Lagrangian hydrocode will probably

make, what errors an Eulerian hydrocode will probably

commit, etc.

Lastly, as a final illustrative help to the reader who wishes to apply the

hydrocode test problems, we present an application of the test problems. We

apply the seven hydrocode test problems to the typical Lagrangian hydrocode

PUFF (described in the introduction). This is done in the last heading:

(b) PUFF comments

Here we present the error graphs and error tables

for PUFF to illustrate what we believe to be a

reasonable way of describing the "distance"

between the PUFF solutions and the exact solutions.

9
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We did not illustrate the Eulerian input by applying the hydrocode test

problems tc an Eulerlan code.

1. HYDROCODE TEST PROBLEM SCTP-I

a. Description of Problem

This is the steady profile solution of a constant velocity piston

compressing the fluid ahead of it. By steady profile solution it is meant

that the fluid parameters from the piston face to the shock front are constant,

and also to the right of the shock front the fluid parameters are constant.

Therefore, the velocity of the piston and the velocity of the fluid between the

piston and the shock frcnt are the same.

Figure 1 attempts to explain the problem graphically,

Piston ShockLeft side S Right side

Pit pt vzPrs r vr J

v v A is the cross-
p s sectional area

of the pipe

Figure la. Pipe Plot for SCTP-I

10
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dX
dt

t Left side.
constant wave d

0 Right side
cott constanet wave

Left of piston

Figure lb. Eulerian Wave Plot for =YP-I

The variables used wiii be

A E cross-sectional. area of the pipe

Cz = sound spzed to the left of the shock

Cr = sound speed zo the right of the -hock
P, j pressure to the left of the shock

Pr = pressure to the rght of the shock

P t = density to the left of the ahock

Or = density to the right of the shock

V, = specific volume to the left of the shock

V r  specific voltume to the right of the shock

vy - fluid velocity to the left of the shock

v E piston velocity
p

Ii ii
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vr fluid velocity to te right of the shock

v s shock velocityS

b. Derivation of Solucion

(1) Conservation of Mass ov the Equation of Continuity

Looking from the righ. side of the shock wavp, the mass engulfed

in time At by the shock wave is

(Vsvv) r Alit 1
Looking from tie left side of the shock wave, the mass coaing through the

shock wave in time At is

(vs-VI) Pt Aft

Let m be the mass per second per unit area passing through the shock. Then in

time At, the mass mAAt will pass through the shock- Hence,

(v-vt) pt~ = W- (vs-~vr) iy, (l:ao!

So,

v. = - ,_ and v = v. -r/p:

Therefore,

v.- vr Pm r I) (r7

(2) Newton's Second Law or the Equation of Motic or Conservation of

Momentum Applied to Mass Passing through the Shock WaveI

Suppcse the mass mAt passes through the shock wave in elme At. j
From F= d/dt (Mv) comes

(mAht)v- (mAAt)v r
F linAt

12



ANFL-M-67-127

So,

IF =mA (v,-v.)

Also,

IF (P 2 ,-P)A

Therefore,

Pi Pr =l ) m(2:42L)

(3) Conservation of Energy or Energy Balance Equation

(a) "Work done o a mass passing threugh shock wave

Recall that

W= JF dS

The work done on the mass mA~t entering the'shock wave is (-.Pr A) (vr.At).

The work doue on the mass iaAft exitIng the shock wave is (PEA) (v,,At).

Therefore, the work done on the mass mM't as it passes through the shock wave

is

( - Prvr)AMt

AW -- the work done on the r-ass mAht per area A per time At.

AW = P ' PV't r r

(b) Kinetic ener-y change in a mass passiug through the shock

wave

Th, change in kinetic eaergy of the mass mAAt as it passes

through the shock wave is 1 mM

AK E tne =hange in kinetic energy of the mass , 1ATt per area A per time At.



AFVL-TR-67-127

AK 1/2 m v-v2)ir

(c) Internal energy change of a mass passing through the shock

wave

The specific internal energy e is a function of the pressure

and specific volume e = e(P,V). So the internal energy of a gas with mass mAAt

is (mAAt) e (P,V).

Al E the increase in the internal energy of the mass mAAt per area A per time At

as it passes through the shock wave in time At.

Al =m (e (P z V)- e (rV)

(d) Energy accounting

The increase in the mass mAAt's internal energy plus the

increase in its kinetic energy is equal to the work done on it. Symbolically,

Aft fAI+AK) = (AW) AAt or Al + AK = W or

(e Pt'v + 2. (V2-V2 ) j~ p V~~ (3:CE)
i~ m £V£-ePr"Vr 2 k r -r r

(4) Equation of State

The equation of state used is that of the perfect or ideal gas

model of standard air.

- (y-l) e PV = RT (4:EOS)

y the raric of specific heats. It will be taken as 1.4 which is
approximately the value for standard air

e E specific internal energy

P pressure

V specific volume

R 2 gas content

T E temperature

14
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1 (5) The Rankine-Hugoniot RelationI By (2:N2L)

so

(2-2) P r(V9 +V

I By (1:CM)*

in (vf.'V) /(Vr-Vk)

By (4:EOS)

I, Substituting these into (3:CE) yields

~r (e Cer) + (PI-r) (v~~ i~r -c P v
orr

0~e - P X+r (v -) (5:RH)z 2 k r

(6) The Shock Speed 'Relations

Recall that by (1:CM)

(V (v-vz) 5 (v-vr) pr im

:1 By (2:N2L)

B~y (3:CE)

M (pV -1,v V1+ (2V)=pVZ

15
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Eliminating m, p0, V, and P., these equations yield

-- - t -P V +1/2(v-v 2)
Y-1 Pr + (vs-vr) Pr (v-Vv :- Vr -P.Vr 1 ( r)

r S r r r

Svr~) Pr

This reduces to

v2 2 v£ + v)v + v + Yv v - =0

The solution to this is

3-v ~114vZ+3yv

v = v + 4 v + v£+-- )+C- (6:SS(v))

The plus sign is taken on the radical so that v > 0.

From (1:CM) and (2:N2L)

P -P
k sr r

Therefore,

Z2 s(vv-v-vr= 2 -" - + VsVr r

16
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Substituting this into the vs quadratic yields

2 -Y V~ Vr) - +~Y cr+ v V 2 )+ 2 C2 0

or

v 2 -2vrV +v2 C ZV-rs r 2 pr r

So,

+ r C r

So,

J

s2 + +-PI+X r) (7:SS(P))

By (5:RH)

rr

Substituting thiis into (?:SS(P) yields

2yP V2

V5  Vr + ) -Z (y-~l) Vr (8:SS(v))

17
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Notice this requires thac

(y+l) V- (Y-l) V 0

which requires that

-1 Pr

Therefore, for y 1.4, p / r < 6 is required.

(7) Aclitional relations

Suppose the right side values are specified and

(a) v£ is specified

By (6:SS(v)), v is determined.s

By (l:CM) and (2:N2L)

= Pr + (V V) Pr (v~vr)

By (l:cM)

V -V

v -vn r

s k' I£ V _AO

(b) P is specified.

By (7:SS(P)), v5 is determined.

By (1:CM) and (2:N2L)

P -Pr
v£z r v -v + v r

s r

By (l:CM)

V -V

18
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(c) UZ is specified.

Recall (8:SS(V)) is

Ir r
vs v + + ( ) V- (Y-) V

In order for the radical to be defined, it is required that

z < r Y+1

If this restriction is satisfied, then v is determined.S

By (i: CH)

-vE v Vs-V (vs-vr) Pr

By (2:N2L)

r(vs vr) Pr (vtvr)

c. Application as a Test Problem

(1) Eulerian Input

(a) Initial values

To the right of X , the initial shock position, define the
5

velocity to be vr  0, the pressure to be Pr > 0, the density to be pr > 0.

From this, C2 = yP V is determined.

Let v = MCr for some H > 0. Now the shock velocity is

determined by (6:SS(v)),

v1 M+ ( )

19
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For 0 < X < Xs, the velocity is defined by v. = v, the pressure is defined by

P r + Vs Vpp r  (2:N2L) and (l:CM) defines the density p = vsPr/(Vs-vp).

(b) Boundary values

At X = 0, hold the velocity at v., the pressure at P . and

the density at p£. Notice that for an Eulerian code, this is as if the piston

were always to the left of 0 and the computer solution were exact from the

piston to 0.

(2) Lagrangian Input

(a) Initial values

The Lagrangian input is the same as the Eulerian input.

(b) Boundary values

The Lagrangian input is the same as the Eulerian input.

(Notice that the interpretation of the boundary value is much more satisfactory

now because the piston is always at x 0.)

(3) Numerical values for SCTP-I

(a) SCTP-I-A

M = , AX = I meter, X =50 meters

10 4 dynes/cm2

r =10-0 gm/cm 3

Right boundary at 300 meters. These values yield

1.18 x 10 5 cm/sec

v 2.08 x 105 cm/sec~s ,

S~P 3.47 X 104 dynes/CM2

V9 =4.34 x 105 cm3 /gm

A reasonable output recipe is to run the problem to 0.1 second with prints at

0.01 second intervals. The 300th zone should remain inactive so total energy

sums will be taken out to there. With the CFL number set to 1, the first At

will be about 6.9 x 10- 4 sec. After the first time step, the time steps should

all be about 3 x 10- 4 sec. Therefore, it should take about 335 cycles for a

CFL number of 1.
20
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(b) SCTP-I-B

Same as A except M 1 100. This yields

v I-= 1.18 x i0 7 cm/sec

P£ = 1.68 x 108 dynes/cm
2

V = 1.67 x 105 cm3 /gm

C c- 6.26 x 106 cm/sec

v -- 1.42 x 107 cm/sec

A reasonable output recipe is to run the problem to 10 - 3 sec with prints at

i0 - 4 sec. With a CFL number of 1, the first time step will be - 1.6 x 10 - 5 sec.

After the first time step, the time steps should run about 2.7 x 10-6 sec.

Thus, it should take about 375 cycles to run to 10 - 3 sec if the CFL number is I.

As in SCTP-I-A, the 360th Zone should remain inactive so total energy sums will

be taken from zone 1 to zone 300.

(4) Comments on the Computer Solution

(a) General comments

If the hydrocode is solving this problem correctly, ,the

velocity of the shock will be about vs . The quantities to the left of the

shock should remain at v,, P.,, p, and the quantities to the right should be

Vr ri Pr"

The shock front should remain sharp and not smeared over too

many zones. The specific internal energy on the left should be P2kV2/(y-1); on

the right, it should be Pr V r/(y-1). The specific kinetic energy on the left
should be 1/2 v2; an the right, it should be 1/2 v2.rrr

The specific total energy should be 1/2 v2 + P V£/(Y-l) on

the left and P V r/(y-1) on the right. To check conservation of total energy,

sum (1/2 v2 + PIVI/(Y-1)) M., where M is the mass of the Ith zone, from the

piston face to some fixed point on the right which remains undisturbed through-

out the problem (zone 300 for SCTP--1-A or SCTP-I-B). This value should

increase by P2Zv2It, where t is time, for a Lagrangian code. For a Eulerian

code, take the above sum over I and subtract t v,(i/2 v2 + F V 1'(y-1)) P,

because of he interpretation mentioned in (1)(b). After this is subtracted

from the total energy sum, the remainder should increase by P2Zv2It. The reason

for the time step sequence as mentioned in (3)(a) is that if the CFL number is
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1, then for the first time step At1 =-AX/C. Z 6.9 x i0-'; but after one of the

zones on the right has been compressed, it should be about 43.4 cm long; then
- I

At2  43.4 cm _3 x 10 - 4 sec

The shock speed is moving at about 2 x 105 cm/sec, so in the first time step

it moves about 140 cm, which will engulf the first zone to the right. After

the first time step, the first zone on the right should be compressed to about

43.4 cm.

Care should be taken in determining the correct time ane

position of all quantities produced by the code being tested. For example, in

PUFF, the velocities are one half time step behind in time and the Jth values

of the pressures, densities, and internal energies are halfway between X(J-l)

and X(J). Errors on the order of 5 or 10 percent can arise if these variables

are not plotted at the right time and place. The energy partition is of

interest because it indicates whether or not the energy dissipation rate

associated with entropy increase across a shock is correct. In particularg if

the code uses an artificial viscosity as a dissipation mechanism, the energy

partition can indicate whether it introduces too much or too little dissipation.

(b) PUFF Comments

1. SCTP-i-A

ACCURACY: Overall accuracy was on the order of 1 percent

except for the region of the initial discontinuity zone and the zones where the

shock transition occurs. That is, P, V, v, e, and the shock speed were all

within about 1 percent except at zone 52 (zone directly in front of the initial

discontinuity) where e and V were about 13 percent high and in the shock transi-

tion zones where the P, V, v, e take about six zones to change from within 1

percent of Liie iLeft Qtpte to within 1 percent of the right state. To change

from 10 percent of the left state to 10 percent of the right. state takes about

-three zones. I believe that the e, V peak in zone 52 was caused by the conver-

sion qf kinetic to internal energy by the artificial viscosity which was

* intensified here by the sharp jump at the initial shok wave position. After

the shock had been rounded off a bit, the artificial viscosity term reduced

and remained uniform for the balance of the problem. This increase in internal

energy combined with constant pressure produced a higher specific volume because

the specific volume is proportional to the internal energy/pressure quotAent.

22

i -{ I



IAFVL-TR-67-127.1
Be1'nd the shock, there is a little rarefaction dip in

density and pressure which is traveling to the left. At early times this dip
exceeds 1 percent but does nit reach 2 percent, and at later times it fades

away.

The a:bove statements indicate that the Rankine-Hugoniot

S ~ relations are heing satisf*ed asy.iptotically. PUFF's total energy, total
internal energy, and total kinetic energy errors (deviations fro.; the exact
solutions) are small as indicated in Table I, thus indicating approximate

conservation of energy and correct entrgy partition. In particular, the Q
(artificial viscosity) conversion of kL'etic energy to internal energy was

operating at about the correc: rate.

TiM: PUFF took 103: cycles, giving it an "effective

CFL ntmber' of 335/1033 u 0.32. PUFF's rezon, capability was not utilized.

PUFF took 72 seconds CDC 66G0 central processor time to run 1033 cycles on

this problem.

2. SCTP-i--B

ACCURACY: Again, the only distcrtions vere associated

with the" initial discontinuity and the later shock posivions. The internal

energy peak in zone 52 was at about 12.7 x 1013 ergs/gm wLile it should have

been about 7.00 x 1013 ergs/gn. The pressure was correct iL zone 52 so there

was a corresponding peak in the specific voline at zone 52. ihe rarefaction

di-p in the pressure and density which is seen at early ti,:es is less than 3

percent. By cycle 1495, this rarefaction dip is down to 1 percenk or less.

The shock transition is again about six zones for 1 percent of the left Lo 1

percent of the right and about three zones for 10 percent to 10 percent.

Except for the above mentioned distortions, the PUFF solution to SCTP-1-B has

at most about 1 percent error for all other zones. Again, the sum tote! energy,

sum internal energy, and sum kinetic energies are close as indicated by Table I.

TIME: PUFF took 1463 cycles, giving an effective CFL

number of 375/1463 ;z 0.26. PUFF took 75 seconds CDC 6600 central processor

time to run 1463 cycles on this problem.

3. Discussion of the initial discontinuity

In inputting a discontinuous velocity profile into PUFF,

there are several alternatives in selecting vm (thq value of the velocity at

the discontinuity). Grarlicaly, the exact picture is this:
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V

M_
v

VXv I

xs 1  xs xs+1

where m is the mass in the zone to the left of the discontinuity and m is the

mass of the zone to the right of the discontinuity. Xs is the position of thediscontinuity, Xs_1 is the adjacent zone boundary to the left, and X s+ is the

zone boundary to the right.

Since PUFF uses a linear interpolation on its velocities,

the PUFF profile will look like this when a value v is given:m

v vIIn

V

V 24

s-l s +

24
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Some altenatives for v
m!' (I) Set v to either v£ or v.

-h (2) Minii ize the maximum deviation of PUFY)'s velocity
profile from the exact velocity profile. This leads to

- VjhTV

V

(3) Conserve the momentum of the exact profile. Thi.
yields

Ioj r v rV = _p~

I(4) Conserve the energy of the exac t profile. This yields

Imv ~ V m vi1 VJV (mv n 2 \
Vu frr r 1+ 3 ,gm

I which,'twhen v O, becomesS( j
F 3 me.

a M4-mr
Notice that if vr 0, the v of (4) is bigger than the v of (3) which in turn is

rm 
m

bisger than the -7 of (2) Vhen m < m . So we b-ave, when v 0 and m <a
r r ki-r

(2) (3) (4)v < v <v <v < v;r m m m

Now the internal energy spike increases as one increases the upper index of
M let vmi) . r and v 5 ) , v but the rarfact'on dip and the associated

hump leading it decrease. In all subsequent shock inputs in this repert, we
set v =v£.
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Table I-A*

ii
SPUFF ERROR TABLE FOR SCTP-I-A WITH v =v2

m

Problem time 0.1 sec PUFF cycle = 1033
Computer time = 72 sec Nwmrer of ac" ive zones 267

Position ofSum_ _r. Frr. Max. Err. Max. Err.

Pressure 0.0251 +0.339 X~S
Velocity 0.0423 +0.583 X

s
Density 0.0229 +0.292 X

Sum 1nt. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 1.324 x 109 2.270 x 108 1.551 x 10?

PUFF 1.324 x 109 2.264 x 108 1.550 x 109

Table I-B

iUFF ERROR TABLE FOR SCTP-I-B WITH v
'm 9.

Problem time = 1.0 x 10- 3 see PUFF cycle = 1463
Computer time = 75 sec Number of active zones 198

Position ofSum Sr. Err. Max. Err, Max. Err.

Pressure 0.0486 +0.644 X

~S

S

•Density 0. 0568 +0.5"17 X

Sum Int. Erer iy Sum Kin. Ener& Sum Tot. Energy
EXACT 3.095 x 1012 3.093 x 1012 6.188 x 1012

PUFF 3.098 x 1p , 2  3.097 x 10!2 6.185 x 1012

*See Appendix III for a discussion of the Error Tables.
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2. HYDROCODE TEST PROBLEM SCTP-II

a. Description of Problem

In this problem, a piston moving with constant velocity vp<< 0 to the

left evacuates a pipe in which the gas was initially at rest. In so doing, a

rarefaction wave moving to the right is formed. See figures 2a through 2d for

a graphical description.

Left side Rarefaction Right side
constant wave wave constant wave

I ; Pistoni-
noving P< P < P
to the P k' o -- - r Prvr, Pr

left Vp v <v <v r  Vr= 0

t + Y+1
X (t)=Xp(O)+vPt XR(t)=XR(0)+ (Cr+ 2 vP)t Xct)=XC(O)+Cr t

Xp(t) moves to the left with velocity vp < 0.

XR(t) may move right or left or be stationary depending upon whether its

velocity Cr + y+1/2 vp is positive, negative, or zero.> 0.

X C(t) moves to the right with velocity Cr > 0

Figure 2a. Pipe Plot for SCTP-II

b. Derivation of Equation

(1) The Eularian Equations

Consider the Eulerian formulation of a homentropic (see index foi

definition) hydrodynamic process for an ideal gas (see Appendix I for a

derivation of the following equations):

Equation of con£1nuity:

t + vp. + Pv X = 0

Equation of motion:

v + v'x + P = 0
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Equation of state:

(y-l) e = PV

Since the process is homentropic,

and

C2 _dP dP

So,

pX dP

P= - x C2px

Therefore, the equations form the homogeneous hyperbolic system:

k \v~x o/k X

The method of characteristics will be used to derive the solution.

(2) The Method of Characteristics

(a) Canonical form

For convenience, introduce a suc that do Cdp/p. For

P - PoC Poi

a = 2C/(y-l) + const. So, define a as 2C/(y-l). Then

28
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Let v - v + a, w E v - a. Then

V t + C 0 P )

kw: 0 v -) jW

Notice that the matrix is Dow in characteristic form. That is, its character-

istic values are on the diagonal and zeros are elsewhere.

(b) Characteristic curves

Consider the curves in the X,t plane which are solutions of

the ordinary differntial problems:

= XZ and d + v + C

or
o r ~ X -( t - -X _ a n d d X - v - C

Notice that

Tt V (-, V + Vt S 0

and likewise,

dt ,+(-() t=

v and w are called Riemann invariants because v is constant on the curve

VX+(t),t) which is called a characteristic curve and likewise, w is constant

on the characteristic curve x(t),t) Th4erefore,

and

Hence, if vXo ,to), , X ,t 0) are known for scne (X ,t the values of v + a

are known at all points along the curve (X-(t),t). The i-nitial and/or boundary

dara for the original partial differential problem car be used to determine

values of v and a at some (Xo, to). That is, the initial data specifies
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V(Xo,to) and o(Xo,to) for to = 0. We repeat that the curves (e+t),t and

X-(t),t) are called characteristic curves. The family of curves in the (X,t)

plane with slope v + C is designated C+ characteristics. Likewise, the family

of curves iai the (X,t) plane with slope v - C is desigLaced C_ ciharacteristlcs.

Notice that on a C+ characteristic dv/dp = dv/dp + do/dp = 0 and do/dp = C/p

so dv/dp = - C/p. With this relation, we may define a mapping from C+ charac-

teristics into curves in the (v,p) plane. Let the curve ( (t),t) with initD.1

values (Xt o ) be mapped into the curve (v(P),P)with initial values (V1P)

where v 0= v (iot 0 ) * P0 =p~X, t0) and dv/dp - C/p. This family of curves

in the (v,p) plane is designated G characteristics (because they are the

images of the C+ characteristics). Likewise, the family of curves in the

(v,p) plane with slope C/p is designated [r characteristics (because they are

the images of the C characteristics).

The method of characteristics will now be applied to SCTP-II.

Remember that SCTP-II can be interpreted as a piston withdrawing from a pipe

containing a gas initially at rest. Let X.(t) be the position of the piston

at time t,Xp(0) = 0. Let Vp be the velocity of the piston, vp < 0. Now the

information that the piston is being removed travels back into the undisturbed

gas with the speed of sound of the resting gas, C . So, in the X,t plane a
t)r

wave plot looks like figure 2b. First C(X (t),t), the sound speed at the face

of the piston, will be determined by the method of characteristics. Notice

(.n figure 2b) that the C characteristics have (X0,t0) in the undisturbed

region (therefore, v (Xo 't )and aot 0) are known) and the C_ characteristics

intersect the piston path line. The C characteristics will intersect the

piston path line because a C characteristic will start out in the undisturbed

region with slope -Cr; then where the C characteristic enters the rarefaction

wave, its slope v - C becomes more negative than the fluid velocity as long as

C > 0. C will be positive if the piston is not withdrawn too fast for .the

Was to follow (that is, if no vacuum is formed between the gas and the piston).

When no vacuum is formed, the gas will be in contact with the piston face and

there it will have the velocity vp of the piston. Therefore, the C charac-

teristics intersect the piston path. Hence, if (Xo'tN is in the undisturbed

region (e.g., if to = 0 and Xo > 0), v(Xo to) = 0, (X0 to) 2Cr/(Y7-l), and

V.~~~ ~ 0'o xot V(xp(t),t) - a(Xp(t),t). So, -2C r/(Y-l) v? -2C(X(t),t)

(y-l). Therefore, C Xp(t),t = y-1/2 vp + Cr.
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XRt=C 2"P
X p (t)v p t

Left side l
°  Xc(t)=Crt

constaut wave Rarefaction
0, wave

Right side
constant wave

Figure 2b. Eulerian Wave Plot for SCTP-II

(c) Simple waves

Note that v - a is the same constant, -r, for the entire

rarefaction region. Such a region is called a C_ simple wave. Also, if v + c

is the. same constant in a region, then the region is called a C+ simple wave.

Since v - a = -a in this region, v = a - a so v depends only on a. But a
r r

depends only on C which depends only on p. Therefore, P, v, a, C depend only

on p. Notice that if a - a is substituted for v in

(V )+(C X (0)
then the one equation at + (5-0r+C) a 0 results. Since C = y-1!2 a, this

equation Is of the form at + (aa+b) a = 0 where a and b are constants. The

general solution to equations of this type may be expressed implicitly as

a(X,t) -FX - (aa(X,t) + b)t).
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So,

So(Xt) F(X - (-o +C = FX - (v+C)t) = F - ( o

F can be determined by the condition at the piston face. For t < 0,

a I(t) ,t =o r  r

Therefore, for 4 > 0,

F(4) or

For t > 0,

cy(Xl(t)st) ' 0rP - a +-vP = F(XI(t) -(v~tCl)t)

If Vp is constant, then Xp(t) = Vpt, so a. = F-C Therefore, for

4 0, F(t) = a + vp. Summarizing,
r P

(r + Vp if < 0

From t >0 and from the formula for F() where 4 = X- -j o-art, it follows

that

X >(L -- ( )t4=-Xft > Cr

and

X Y+1 1~
X < - -X/t < Cr +2 P

Therefore,

x C ( z F 0ot

x 2 or A k 2 y-ur)t 4 Cr > X/t > Cr + 2
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-en ce.

X/t < C +r c +v

r 2 vPr P

- and

C + Y+1 _X/t<C r 4+""t+ =2

r 2 vP < y==Xlt+ l

and

X/t > Cr =*a -. -or

Thus o(X,t) is completely defined. Now the relation between o and p is one

to one so p is completely defined. As mentioned previously, P, v, c are all

functions of p, so P, v, c are completely defined. Notice that 0p = r + Vp

therefore, aF will be psitive if IVpI < ar.  Since ap = 2/y-1 , for the

piston not to leave the gas (i.e., no vacuum) it is required that 1Vp1 < Cr 2/y-l.
In the left side constant wave, the fluid velocity is v.. In the rarefaction

wave, the fluid velocity goes linearly from v. to 0. In the right side constant

wave, the fluid velocity is zero. See figure 2c, Since there is a one-to-one

relation between velocity and density, all variables may be written in terms

of the velocity because by the -equation of state P is a function of p,

XW(t) x(0) + vvt

(4. +i v)
XR(t) X(O) + (C + 2 Pt

Xc(t) x(o) + Crt

For

XP(t) < X < XRct)

v(X,t) = Vp

33
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For

X-x0 C t)
v(X, t) =VP XR(t)XC(t)

For

X > X(t)

v(x,t) = 0

Then

C (X, t) - Cr + v v(X, t)

and

xx

V =-IvpI

Fig-ire 2c. Velocity plot for SCTP-II
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Or they could be written as

'22

and

P(X,t)- Prk C t

The total energy TE at time zero from the piston face at Xp(0) to a position XQ
far enough to the right so that it is quiet (at rest, stationary) throughout

the problen time is

Y-1

The total energy from the piston face XP(t) to XQ at some later time t > 0 is
TE(t) = TE(O) + PpvPt where PP is the pressure at the piston and Vp - -Ivp is
the velocity at the piston. The total kinetic, energy TKE is initially zero
(t m 0). At later times,

c (t)

(t > 0) TKE(t) vi 1/2 p(X)v 2 (X)dX

XR(t)

xc
XC 0

dY .1/2 p(X)v 2  p(V)V 2X'(v)dv

XR VP

-2
o(v) - pr (1 11-1Y

and

27- -7, 5 i f y = 1 .4
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Xc-X XR-XC
(v) O-v p Vp

So the kinetic energy fromR to XC -s

_( +-i v 2 v.2~Xc [rxX~l112 2+ X dv 2 vp + +5
. \ 2P; Vp

+B3 + 4 +B
6 7

where

B =y vP
2 C

r

* Then the total internal energy is the total energy minus the total kinetic

energy.

c. Application as a Test Problc

A(1) Eulerian Input

(a) Initial values

For o < xP (XO)

* V M
-IvP

2Y

P =P =- CrP I

2

For X > XP(O)
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~P

I (b) Boundary values

For X 1

v -1y-1

2

(2) Lagraugiarnput

(a)Iniialvaluesii For x > 0

P P

(b) Boundary values

I For x -0
I fv(O,t) = 1P

f X(0.0 ) X(0,0O) - IVPJt

j -or, since X-P(t) X(,t), then
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(3) Numerical Values for SCTP-II

(a) SCTP-1I-A

P = 104 dynes/cm
2

[ r

Pr 
= 10-6 gm/cm

3

C2 = YP V = 1.4 x 1010 cm2/sec2

Ir r r

AX = 100 cm

X.F(0) = 100 meters

XQ = 300 meturs

A reasouable output recipe is to run for 0.1 second and print every 0.01 second.

This takes about 120 cycles for a CFL number of 1.

; (b) SCTP-I -B

Same as A except Ivp1 2Cr/(Y+l)

(c) SCTP-II-C

Same as A except Ivp- 2 Cr/(y-l)

,.[(d) SCTP-II-D

Same as A except IvpI = 4C/(y-l)

(e) SCTP-II-E

Same as A except free boundary condition on the left in place

of withdrawing piston on the left.

(4) Comments on the Computer Solution

(a) General

If specific volume is used in a code instead of density, then

it cannot solve those problems where vacuums occur (C, D, and E) because the

specific voi'ime becomes infinite. Whereas, if density is used, the vacuum

rondiL2 n is expressed by the density going to zero. Also, the Eulerian
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formulation cannot give the correct answers because in the equation of motion

the density (as a fun on of time) is used as a divisor. (In Lagrangian

formulation it is the nitial density which is used as a divisor.) The mathe-

matical solution to C, D, and E is the same. However, it cannot be expected
that the computer solutions will be the same. Notice that in C, the left

boundary of the gas is forced to move at the correct escape velocity. In D,

the left boundary of the gas is constrained to move too fast to the left. In

E, the code is allowcd to calculate what the escape velocity should be. Because

the masses of the zones of the fluid do not go tc zero at the left boundary,

the escape velocity that the code computes will be too low. That is, in the

mathematical solution, the fluid starts moving with the escape velocity instantly

upon its release. For a nouzero mass of fluid to jump from zero velocity to a

constant nonzero velocity requires an infinite force. The mathematical con-

tinuum model is nit, however, predicting such a thing. The continuum model is

requiring that an "infinitesimal mass" start moving with a constant velocity

and is thus not requiring an infin ...e force. To state this precisely, let x

be the label of the gas point, to the left of which is a vacuum, i.e.,

X(xl't) - XR(t) . Let x r be the label of the gas point, which at time t is at

the boundary of the undisturbed gas and the gas which has started moving toward

the vacuum, i.e., X(x t) - Xc(t). Let xq be the label of some fixed gas point

such that in the time interval of interest [O,T], T > 0, the gas point labeled

x qis quiet or undistured, i.e., x q> x r for 0 < t < T (xr is a function of

time), e.g., let X(Xqt) - X,. Now the force on the left boundary of the gas

at time zero is the negative (the force is directed to the left) of the initial

pressure P of the gas times the cross-sectional area of the pipe (which is a

unit area) and this is equal to the time rate of change of the momentum of the

gas at time zero. Expressed symbolically, this is

X (Xq,t)

d rI-P - lim Tt ( P(MO v(X,t)dx

t-r X x t

where f(X(x,t),t f(x,t), or by a change of variables in the integral, we have

i3
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xq

-P = lim - p(-:,O) v(xt)dx
tO dt
t>O x I

(This can be fu-rther reduced to

C t

5 v(x,t)dx
~0

-P = Plim
t-*Ot

t>O

by defining x, M 0.) So that, -although the time derivative of v at x and time

zero is not defined, the time derivative of the momentum is defined and finite.

So in the mathematical continuum model, the Jumping of the left hand boundary

to a nonzero constant velocity at time zero does not require an infinite force.

However, in the discrete model, the finite zoning produces a positive mass for

the left boundary so that it cannot jump from a zero to a nonzero constant

* velocity by the application of a finite force. The finite force used in a

code should be just the negative of the initial pressure at the left hand

boundary. Then the acceleration of the left boundary is -P divided by the mass

associated by the code with the left zone boundary (which, for example, in PUFF,

is 1/2 the left zone mass). In C and D, there will be a couple of compensating

e.rors influencing the tota] energy computation. An erzor that will tend to

reduce the total energy is caused by the fact that the pressure at the left

zone boundary P will not be zero; therefore, the work done on the gas at the

left boundary, Ppvpt, will be negative. This causes an internal energy decrease

by the first law of thermodynamics, An error that will tend to increase the

tota. kinetic energy and, therefore, the tocal energy to the numerical integra-

tion of the kinetic energy. The typical caues r.umerical integration of

1/2 5 O(X) v2(X)dX

XI

will yield too large a value for the kinetic energy because this will be app.roxi-

mated by something like

40



2 AFWL-TR-67-127

XI+l

1/2 v2(X1 +1 / 2) g(X)dX

where

X ~ii 2 is 12

This approximation is too large because of the characteristics of the-particular

p and v encountered in this -problem. This error affects both C and D. A

further erroneous increase that ar: es in D is caused by the left boundary's

overly high velocity. Thus, the kinetic energy of the left zone is erroneously

increased; therefore, the errors affect the energy partition by erroneously

increasing the kinetic and decreasing the interal energy. The total energy

may either increase or decrease, depending on which error dominates. Also,

the discrete models will not allow the density to go to zero at the piston face

because the left zone started with a finite mass and is just being stretched

out as the problem progresses. Other points of interest in the continuum

solutions which should be approximated by the discrete solutions are these:

In A XR(t) moves to the right with velocity Cr/2 . In B, XR(t) is stationary.
In C, D, E, X r(t) moves to the left with velocity -2C r/(y-1) and XR(t) marks

the boundary between vacuum ind gas. The gas can just keep up with the piston

in C, i.e., Xp - XR, and at t:he piston face, the values of the pressure and

deneity are zero. In D, the piston leaves the gas behind with a vacuum between

the piston at X and the gas front at XR . The gas front can move into a vacuum

with, at most, the velocity -2C /(y-l), which is known as the escape velocity.
r

So, in C, D, E, XR(t) - XP(O) - 2Crt/(Y-l). The total energy from the piston

to an undisturbed point XQ on the right increases (or decreases) by P pVpt

where Pp and vp are the pressure and velocity at the piston face. In A, B,

Pp > 0, but in C, D, Z, Pp = 0, so in A, B, the total enzergy should decrease,

but in C, D, E, it should remain constant from start to finish.

(b) PUFF comments

1. SCTP-11-A

The typical PUFF profiles in velocity, pressure, and

density deviated from the exact solution in the manner described in figure 2d.
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Pressure
density velocity

EXACT

i PUFF

I I I
Xp XR XC

Figure 2d. PUFF SCT-II Error Graph

Reading figure 2d from right to left, we first see an underround at XC, then

an overround followed by an undershoot at XR . At time 0.1 (170 PUFF cycles)

second, the velocity deviations at the undershoot and the underround are both

about 3 percent (the base for percertages was the piston velocity). If we

take the initial pressure and density as bases for the percentage deviation in

the pressare and density, respectively, then we get about 2 percent as the

maximum error for the pressure and density. The total energy .)mputations

yielded the following:

-) X was chosen 200 meters to the right of Xp(O). This
Q

yielded a total internal energy at time zero of 5 x 108 ergs. Since the

velocity and, therefore, the total energy is zero at time zero, the initial

total energy is the same as the Initial internal energy. After 170 cycles,

* PUFF reached the problem time 0.1 sec and the energy deviations are presented

in table IT-A. Refer to the energy numbers in table II-A. These numbers are

X10 8 ergs.

PUFF took 31 seconds central processor time on the CDC

6600 and 170 cycles to run this problem to the problem time of 0.1 second. With

a CFL number of 1, it would have taken 120 cycles, so that PUFFs effective

CFL is 120/170 - 0.7 on this problem.
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2. SCTP-II-B

See figure 2d again for the typical PUFF profiles. The

results on percentage iinderround and undershoot are about the same as in SCTP-

Il-A. The total energy computations yield the following:

XQ was again chosen 200 meters to the right of Xp(O);

the initial total internal and total energy, therefore, are 5 x 108 ergs.

After 170 cycles, PUFF reaches the problem time 0.1 second and table II-B

displays the energy deviations.

PUFF took 19 seconds CDC 6600 central processor time on

this problem. Again, PUFF's effective CFL is 120/170 - 0.7 on this problem.

3. SCTP-Il-C

See table II-C for the error numbers.

This took PUFF 170 cycles and 21 seconds CDC 6600 compute.

time to run to the problem time of 0.1 oecond. Thus, the effective CFL number

is 120/170 - 0.7.

4. SCTP-II-D

See table II-D for the error numbers.

This problem took PUFF 170 cycles and 30 seconds CDC

6600 computer time to run to the problem time of 0.1 second. The effective

CFL number is 120/170 - 0.7.

5. SCTP-II-E

As discussed earlier, the gas front at the free boundary

of the gas in a finite difference solution will not move instantly with the

escape velocity because the left zone has a nonzero mass. This causes a

"truncation of the profile." That is, the graphs appear about the same, but

they are not extended as far to the left as the exact solution. See table II-E

for the error numbers.

PUFF took 170 cycles and 29 seconds CDC computer time to

run to 0.1 second. Thus, effe-Ltive CFL number is 120/170 --0.7.
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Table II-A

PUFF ERROR TABLE FOR SCTP-II-A

Problem time - 0.i'sec PUFF cycle = 170

Computer time = 31 see Number of active zones 134

Position of
Sum Sqr. Err. Max. Err. Max. Err.

Pressure 0.0032 -0.0136 XC

Velocity 0.0076 +0.0248 XR

Density 0.0025 -0.0097 XC

Sum Int. Energy Sum~ Kin. Energy Sum Tot. Energy

EXACT 4.629 x 108 1.027 x 107 4.732 x 108

PUFF 4.6Z9 x 108 1.025 x 107 4.731 x 108

Table II-B

PUFF ERROR TABLE FOR SCTP-1I-B

IF Problem time - 0.1 sec PUFF cycle - 170

Computer time - 19 see Number of active zones - 134

Position of
Sum Sqr. Err. Max. Err. Max. Err.

Pressure 0.0032 -0.0146

Velocity 0.0048 -0.0178 XR

Density 0.0027 -0.0104 X
XC

Sum Int. Enerp Sum Kin. Energy Sum Tot. Energy

EXACT 4.432 x 108 2.923 x i07 4.725 x 108

PUFF 4.431 x 108 2.920 x 107 4.723 x 109
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Table II-C

PUFF ERROR TABLE FOR SCTP-1-c

Problem time 0.1 sec PUFF cycle - 170
Computer tme 21 sec Number of active zones 135

-M -- E -Er.Position of.St_ Sgr, Err. Max. Err. Max. Err.

Pressure 0.0036 -0,0157 XC

Velocity 0.0006 -0.0022 X

Density 0.0027 -0.0112 XC

Sum Int. Energy Sum Kin, Enerhy Sum Tot. Energy
EXACT 4.260 x 108 7.395 x I07 5.000 x 108

PUFF 4.249 x 108 8.045 x 107  5.053 x 108

Table II-D

PUFF ERROR TABLE FOR SCTP-II-D
Problem time 0.i sec PUFF cycle - 170
Computer time * 30 sec Number of active zones f 135

Position ofSum Sgr, Err. Max. Err. Max. Err.
Presaure 0.0038 -0.0158 XC

Velocity 0.0007 -0.0023 X

Density 0.0028 -00113 XC

Sum Int, Elergy Sum Ki.En Sum Tot. Enerja
EXACT 4.260 x 108 7.395 x 107 5.000 x 108

PUFF 4.245 x 108 9.919 x 107 5.237 x 108
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Table II-E

PUFF ERROR TABLE FOR SCTP-II-E

Problem time 0.1 sec PUFF cycle = 170

Computer time = 29 sec Number of active zones = 134

Position of
Sum Sqr. Err. Max. Err. Max. Err.

Pressure 0.0025 -0.0140 X
C

Velocity 0.0006 -0.0048 free boundary

Density 0.0019 -0.0100 XC

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 4.260 x 108 7.395 x 107 5.000 x 108

PUFF 4.261 x 108 7.374 x 107 4.998 x 108
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3. HYDROCODE TEST PROBLW SCTP-III

a. Description of Problem

In this problem, a piston proceeds with a constant azceleration into a

gas initially at rest (by "gas initially at rest" is meant that the initial

conditions are: velocity is zero; density, pressure and all other fluid

parameters are constant). This forms what is called a compression wave. At

time ts = 2C r/a(y+l), a shock wave is formed (ts = time of shock formation,

C r sound speed of the gas at rest, a B acceleration of the piston). Until~r
time ts, the variables are continuous and the solution is easily found.* More-

over, except for one point (the front of the compression wave), the variables

are smooth prior to t.. Figure 3 attempts a graphical representation and

description of the problem. As shown in figure 3b, the compression wave front

up to time ts is XC(t) crt. After that time, the compression wave front is

a shock, i.e., there is a discontinuity in pressure, density, velocity, etc.

•Velocity = v r 0Density = r, - corlst

Compression wave Gas at rest Desity = =
Pressure = P const.

Sound speed = const.

p r
Xp P 1/2 at2  XC - Crt

I~ I
Piston face Compression wave front

Figure 3a. Pipe Plot for SCTP-III

*See K. 0. Friedrichs' paper in 1948 C.P.A.M., page 211, for an investigation

of the solution after shock formation.
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t x Cr
I

/" (t) =112 at2

Shock path

t Shock forms here
ts

X
s

Figure 3b. Eulerian Wave Plot for SCTP-III

b. Derivation of Solution

We present here the solution for the preshock region. The preshock

region is the set of all points (X,t) such that 0 < t < ts, i.e., the set of

-points in the X,t plane below the line t - ts -and above the Line t 0 0. This

derivation depends on three key points. First key: there is a one-to-one

relation between the density and the velocity and the pressure of the fluid.

Second key: the values of the density, pressure, and velocity are known at

the piston face. Third key: the density surface may be described in terms

of its level lines in the X,t plane.

Now we will establish the first key. In the preshock region, v - a

v - a -a . This is because the X characteristics (d-/dt - v - 0 extendVr - r r )etn

from the t - 0 line, where v = vr = 0 and a - r , into th.- preshock region,

and, of course, v - G is constant on X_ characteristics. Therefore, the pre-

shock region is a X simple wave, i.e., v - a is the same constant in the

entize region. And the part of the simple wave between X p(t) and X c(t) is a

compression wave (XP(t) is piston faca position, Xc(t) is sound signal front).

Now, for 0 < t < ts, v(P) - (P) - Gr, O(p) - 2c(p)/y-l, c2 (p) - dP/dp (p),

c(0) > 0, Pfp) k- ', k P r/r r This establishes the one-to-one relations
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mentioned in the first key point. Now we will establish the second key. The

velocity at the piston is v = at. So, o(o) .o + at at the piston ta:.e.p r-
Then utilizing the relations between a and c and P and p, the second %zey is
established. So, at the point (Xp(t),t), i.e., the piston face, we know the

density, pressure, and velocity. By the first key, if we knew p(X,t) f:)r all
values of X and t, we would know the complete solution. By the second key, we
know P(1/2 at2 ,t). The third key suggests that we represent the density
surface in terms of its level lines. Therefcre, we investigate the level
lines of the density surface. That is, we will Investigate the paths in tie
x,t plane on which the density is constant. To be precise, we should denote
points on this path by \(x ;t) ) such that for 0 < t < t s(X(P;t) t) = 0o
That is, X is defined to be a function of two variables, density and time. Or,
as some phrase it, X is a one-parameter (density) family of functions of one

variable (time). Let us denote by (X ,t) one point such that o(X 0t ) = 0So, OQX(o;t),t) = 0Xo,to) = P0 for 0 < t < t . Now the level line represen-
tation procedure is composed of two parts. First part: for all numbers, po,

in~ the Saeo athe function pfind numbers X(~t such that p2,)'~ffPo  Second pazt: on a level line, (O'(O

0

0 =d= dX + t

_d= x t P

so

dt PXt

I =0
Therefore,

X X - dt

0 P =0

Then~ ~~ 0e X (P) t Poo

Then let X o to = tko). Then we solve for o and this gives us
to(X,t) which is the representation of the density surface we desire, i.e.,

Po(X,t) - p(X,t). At this point, we know of two previous points which might
bother the reader (we hope there are only two). First poinL: we have been
saying "level line representation" and to be precise, perhaps we should have
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said "level curve representation." We will prove that the level curves are

lines. Second point:

o P =PJ( ) dt
is a bit vague perhaps, but it turns out that

Pt d(vo)

P=P0 P =

so that

f Ptdt- L-p (t-t)

This last relation, by the way, proves the first point about the level curves

being lines. Now we will establish that

Pt I d(vp_) I P

X = dpP=Po PP

In a smooth flow, conservation of mass is expressed by pt + (Pv)x 0. By the

first key, v = v(p), so

t +  d(pv)__ _ 0
t dp pX

Therefore,

Pi =d(Ov)
Px dp
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Therefore,

d(pv)

and

dX = d(pv)
dt dp "

[ is the differential equation for the level line with density p. Hence,

X(Po;t) =x + d ,o) ( )o [dp t- )

dv + dv

addp 
P

ii and

! dv
P T C by v =o -

p- r

2C

0 y-i

C dP

and

P =kp y

So,

dX _ (vo)=(+C
dt dt d5dp P=O p=p
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Therefore, the level lines are X4 characteristics. Thus, in short summary,

the density level curves are lines and also they are X+ characteristics

(figure 3c).

x

Piston

Shock

X characteristics have slope -C r- r

A+ characteristics have slope (y+l)/2 at + Cr at the point (1/2 at2 ,t).

Figure 3c. Characteristic Lines Plot

If the minint intersection time of the X+ characteristics is computed, it is

found to be 2C /a(y+l). A point where X+ characteristics cross may indicate a
r+

discontinuity. This is because v + a is a different constant on different X

characteristics. So, when two characteristics cross, the contradiction can

sometimes be resolved by a discontinuity at the point. And, of course, the

discontinuity is known as a shock. Now we have X(p;t) and the problem is to

find p(X,t); so we must "invert" the relation

x -x + (v(P) + C(o)) (t-t)
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where

0o P (Xoto)

By the second key, v, a, G, p are known at the piston face. All values of

the velocity that are taken on will be taken on at some time at the piston face.
Therefore, by the first key, all values of a, C, P, p will be taken -: it some
time at the piston face. By the first key, if we know the velocity surface,

we know the complete solution. It is computationally convenient to switch to

the velocity as the function to determine first. By the first key, Ihe density
level lines are also velocity level lines. Thus, for any value of the velocity

that is taken on in the preshock region, we can find an Xo,t ou the piston
path such that v(Y",to) = vo. Thus, we can produce the Xv, t v.) such that
V(X(v°),t(v) = v which is required by the first part of the level curve

representation procedure.

X 1/2 at2 + (ato + C (1/ a ); (t- 0 )

and

tV

0 o t~vo) v

Therefore,

A2
X 1/2 a + v° + C (vo)) (t - V

Solving for vo, we get

o I= vX~t I~ -1/2 (y+l) at) ++ yIC t)2 + 2ay (Ct-X).

0 Y

for

X <X<Ct
p - r

and

0O< t< t
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Also, v(X,t) 0 for X > C t and 0 < t < t . Then using the simple waver - -

formulas:

C =Cr (I + -1

2

r k Cr)

Notice that at time t. 2C /a(y+l) and position X = Cr t the

lmvxx (X ) -lr v(,t s )=-
s

This indicates that a shock forms at (Xs ts). Now we compute the total energy

and energy partition. The total energy should increase according to the amount

of work done on the gas by the piston, which is

t t 2!

fPp(T)Vp(T)dT Pr + - atd-f P pf r(+ 2 c r

Integrating by parts, this becomes

____-

2c rPr (1 Y-1
3y,-1 2 c r

a(3y-l) (2y-l) 2 cr
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To get the energy partition, we ha~e the choice of computing either the kinetic
or the Internal and subtracting from the total energy to get the other. We
will compute the internal energy in the compression wave.

c C

Internal energy = pedX = dX
xxiXp P*1 ::p p[! by the equation of state. Using the velocity level line equation which is a

quadratic in the velocity, we get

,dX =--(c - Y±1 at + yv) dv
-a Cr 2

At Xp v v at. At Xr v v 0. Using these substitutions, we get

at
Internal energy P(v)(A+yv) dv

0

where

r - 2

Then, using the simple wave formula for P(v), the integral is

at
l P (1 + Y- ) y (A+yv) dv

0

and this can be integrated by parts.
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at 2-

Internal energy a(-) c ) r r (A+yv)

0

at 2--y + 2

(l 2 2c2

0

Finally, kinetic energy total energy - internal energy. For computation

purposes, it seems best to choose a point, XQ, far enough to the right of the

piston so that the fluid is quiet (at rest) at XQ throughout the course of the

problem. Then take the Initial total energy, which will be

(xQ-x.P(o)) pr e Pr (X-XP(0), -XpO) r er Y-1

and add the total energy increase,

t

f PpvpdT

'This gives the total energy from X to X . Then the internal energy will be

the internal energy in the compression wave, computed above, plus the interna.l

energy from XC to X, which is

P

XQ-Xc) Or er (XQ-Xc) Y
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Finally, the kinetic energy from X to X will be the total energy from X toQ
X minus the internal energy from X to XQ. Note that the kinetic energy from
Q P *

X to X is zero because the velocity is zero.
C Q

c. Application as a Test Problem

(1) Eulerian Input

W'(a' Initial values

P = , p = P v v 0
r r r

(b) Boundary values

Let X(I) IAX

Let GI be the greatest integer function:

1(t) GI(I/2 at2/AX)

Then the left-hand boundary (piston face) will be zone I(t)

and the boundary values there will be

velocity = at 2_

(2) Lagrangian Input

(a) Initial values

pressure -P

density = r

velocity = vr- = 0

rr

(b) Boundary values

at x 0 (piston position)

X = 1/2 at2 and v at
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(3) Num:erical Values for SCTP-IIl

(a) SCTP-I I-A

pr = I04 dynes/cm
2

Pr= 10
- 6 gm/CM

3

c2  mPV  = 1.4 x 1010 cm2/sec2
rr r

a = cr/1 sec

Ax - 10 meters

Right boundary at 1500 meters

A reasonable recipe for output is as follows: Run for I sec (problem time not

computer time) and print at 0.1 sec intervals and at time 2/(y+l) (when the

shock forms). If the CFL number equals 1, this takes 218 cycles. This follows

f rom

An n
At n - mi piston

n r.
I piston

*Then by conservation of mass,

AiX _ r
x 0

So,

Atn _ Ax 
I

cr
C (r) r~'

By the simple wave formulas

2

and
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C + Y-at
Sc r  2 c r

Thus,

0t O0

n

iI and

tn Ax 1
r + - atn') y+l

Then solve the recursion relation for the smallest N such that tN > 1.

(4) Comments on the Computer Solution

(a) General

The characteristics solution is valid until the A+ character-

istics cross at time ts = 2c /a(y+l) (shock formation time) at distance
a r

X = 2cr/a(y+l) (shock formation position) from the original position of the

piston XP(O). At this time, ts, the piston is traveling with velocity 2c /(y+l).

After time t, the characteristics solution methed is not valid.* For all time

the total energy formula is correct. But the energy partitior derivation

depended on the characteristics solutiou methcd, so it is valid only up to

shock formation time.

(b) PUFF comments

The boundary condition should be v = a(t-6t/2), not v = at

because PUFF in Lhq velocity, pressure, density profiles is the "compression

overround" 6t X displayed in figure 3d.
c

*See Friedrichs' 1948 C.P.A.M. paper menticned in an earlier footnote for
discussion of solution after shock.
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Density
Pressure
Velocity

PUFF

EXACT -- 4

X P X C

Figure 3d. PUFF SCTP-III Error Graph

1. ,SCTP-1TI-A

ACIJ'RACY: See table III-A.

TIING: PUFF took 245 cycles and 19 seconds CP time

(CDC 6600) to run to 0.8333 second. Effective CFL number =2!8/324 ;z0.68

on run to 1.0 second.

2. SCTP-III-B

ACCURACY: See tabie 111-B.

TIMING: PUFF took 245 cycles and 21 seconds CP time

(UDC 6600) to run to 0.08333 second. Effective CFL number 218/324 ;:z0.68

on run to 0.1 second.
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Table IIi-A

PUFF ERROR TABLE FOR SCTP-IIT-A
Problem time = 0.8333 sec PUFF cycle = 245
Computer time 19 sec Number of active zones =19

Position ofSum Sqr. Err. Max. Err. Max. Err.
Pressure 00057 0.0426 XIx 

CVelocity. 0.0125 0.0909X
Density 0.0053 0.0407 x

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy
EXACT 4.36800 x 109 2.62864 x 108 4.63087 x 109

PUFF 4.37190 x 109 2.64055 x 108 4.63595 x 109

Table III-B

PUFF ERROR TABLE FOR SCTP-III-B

Problem time = 0.08333 sec PUFF cycle = 245Computer time = 21 sec Number of active zones 119

Position ofSum Sqr. Err. Max. Err. Max. Err.
Pressure 0.0057 0.0426 XC
VelocA'ty 0.0125 0.0909 XC
Density 0.0053 0.0407 XC

Sum Int. nery Energy Sum Tot. Energy
EXACT 4.36800 x 108 2.62864 x 107 4.63087 x 108
PUFF 4.37190 x 108 2.64055 x 107 4.63595 x 108
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4. HYDROCODE TEST PROBLEM SCTP-IV

a. Description of Problem

In this problem, a piston has a constant acceleration out cf a gas at

rest. Eventually, the piston velocity exceeds the speed with which the gas can

move into a vacuum. This speed is 2c /(y-l) and when the piston exceeds it, a

vacuum occurs. Figure 4 presents a gaphical explanation.

v =a t Rarefaction wave -R-C Rest region
P r

S=1/2 at X = C t

Piston face Sound signal front

Figure 4a. Pipe Plot for SCTP-IV

4li0  
XC =Ct

R~est region

.. X

Ficure 4b. Wave Plot for SCTP-IV
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b. Derivation of Solution

The 2nalysis is the same as for SCTP-III.

1 _ 2

I ~ ~~V(X't) r( 2.~5 ~ (Cr 1a)+2 (j)
'Y

for at2/2 < X < Crt. v(X-,t) = 0 for X > c t. For

Cr 2c

c- c r + 2- v

P =P-

For

2cIvI > __-r

there is a vacuum; therefore, 0 = P = p = c from Xp(t) to

xp(tv) 2cr- tv

t V is the time the vacuum is formed,

2clalt - -r

3Y-
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The energy decrease is the amount of work done on the piston by the gas which is

t 2c P 3y-
r5 r t Yy-1 -1

until time

2c

P p 3y-1 -2 

at which time

fr r
a a(3y-l) (2 y2l)

0

'Thne energy partition is also computed exactly like SCTP-III.

c. Application as a Test Problem

(1) Eulerian Input

(a) Initial values

P r Pr v =v r = 0
(b) Boundary valuea

Let X(I) A X • I

1(t) = GI - 1/2 Jalt 2/AX)

1(t) will be the piston face zone and at the piston face

J2c

v =-al )
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P F (-Ialt2)

f-Ialt2t
p p p ,t)

(2) Lagrangian Input

(a) Initial values

P = P O = P . v = v 0

(b) Boundary values

At x = 0,

X =- l/21alt 2, v =-lalt

(3) Numerical Values for SCTP-IV

(a) SCTP-IV-A

Pr _ 104 dynes/cm2

Pr = 10-r gm/cm3

c2= YP V = 1.4 x 1010 cm2/sec 2

r r r

a - cr/i sec

Ax =1 meter

Right boundary at 150 meters.

A reasonable output recipe is to ron for 10 seconds with prints at 1, 4, 5, 6,

and 10 seconds.

(b) SCTP-IV-B

Same as A but a - 0 cr / second and print at 0.1, 0.4,

0.5, 0.6, and 1.0 second.

(4) Comments on the Computer Solution

(a) General comments

After time
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2c

r
v =aJ(y-1)

there is a vacuum between the piston and the gas at

2c

1/2 at2 + - t-t)

the pressure and density are zero fort> t V . From the left edge of the gas at

2c1 2 r
1/2 at2v + :i:- (ttV)

the same formulas hold as before t v . If the hydrocode uses specific volume as

a variable instead of density, there will be an overflow when the density goes

to zero. The total energy should decrease until the vacuum is formed, but

after tv, the total energy should not change. The energy decrease is the work

done at the piston

P (t)v (t)dt
P p

0

This was computed in the derivation of solution. A Lagrangian code with zone

center pressures will not compute the energy decrease correctly because the

piston face zone will never have zero pressure. The energy partition should

also be checked against the EXACT solution as computed in the derivation of

solution. For further comments, look back to the comments in SCTP-II.

(b) PUFF comments

As previously observed, it iG impossible for PUFF to conserve

energy on this problem. The worst behaving variable is the nonprimary* variable,

momentum; the reason this is off so much is )ecause its computation involves

*Primary and nonprimary variables are defined tn Appendix III, Error Functions

and Error Formats. A
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the mixing of a zone center quantity (density) and a zone boundary quantity

(velocity), thus introducing interpolation errors which cannot be ascribed to

PUFF. PUFF's primary* variables are quite near the EXACT solution. See

figure 4c and tables IV-A and IV-B for accuracy.

'I TIMING: PUFF took 25 seconds CDC 6600 CP time and 169 cycles

to run to 10.0 seconds on SCTP-IV-A. On SCTP-IV-B, PUFF took 16 seconds CDC

6600 CP time and 19 cycles to run to 1.0 second.

PUFF Primary Variables:
Prczsure
Velocity
Density

EXACT' -
v''PUFF

/FRarefction

underround

1X

X C

Figure 4c. PUFF SCTP-IV Error Graph

*See Appendix III for definition of primary variables.

67



AFWL-TR-67-127

Table IV-A

PUFF ERROR TABLE FOR SCTP-IV-A

Problem time 10 sec PUFF cycle = 169

Computer time = 25 sec Number of active zones 134

Position of

Sum Sqr. Err. Max. Err. Max. Err.

Pressure 0.0017 -0.0099 XC

Velocity 0.0004 -0.0038 xp

Density 0.0013 -0,0071 XC

Sum Int. Energy Sum kin. Energy Sum Tot. Energy

EXACT 3.09266 x 1010 6.98426 x 109 3.79108 x 1010

PUFF 3.04551 x 1010 8.92017 x 109 3.93752 x 1010

Table IV-B

PUFF ERROR TABLE FOR SCTP-IV-B

Problem time 1 sec PUFF cycle = 19

Computer time - 16 sec Number of active zones 21

Position of

Sum Sqr. Err Max. Err. Max. Err.-

Pressure 0.0166 -0.0492 XC

Velocity 0.0018 -0.0042 XC

Density 0.0132 -0.0350 XC

um Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 3.684 x 1010 6.984 x 103 3.754 x 1010

PUFF 3.671 x 1010 2.844 x 109 3.956 x 101 0
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5. hfDROCODE TEST PROBLEM SCTP-V

a. Description of Problem4 This is called the shock tube problem. It 4s an example of the more

general Riemann problem. The Riemann ptoblem is that of determining the flow

after the conjunction of two states, left state and right state, with P., p,

v the constant values of the left state and Pr, p , v the constant value6 of

the right state. In the shock tube problem, v r and vI are no longer arbitrary

but are set to zero. So the problem may be interpreted as the determination

of the flow after removal of a membrane separating two corstant states at rest.

We choose to make as a convention P > P -- 0. Then in the code test problem

we will run through the three possibilities

~t 0£ r

Pt < or

At time zero, the membrane is removed. The resultant action is a rarefactica

wave traveling into the left state and a shock traveling into the right state.

The velocity Is v, C to the left of the rarefaction wave. From the left of

tha rarefaction wave to the right, the velocity rises linearly from 0 to v > 0.
The velocity is constant at v from the right of the rarefaction wave rightward

toward the shock. At the shock, the velocity jtx-ps from v > 0 down to v = G.m r
See figure 5d for a velocity plot. The pressure drops continuously across the

rarefaction wave from Pt to P . The pressure has the value P constantly fromraeato aefo £t m m

:he right of the rarefaction wave to the shock. The pressure drops from P. to

Pr across the shock. See figure 5e fot a pressure plot. The density drops

continuously across the rarefaction wave from P to a o, which value it main-

tains from the right of the rarefaction wave to the point in the fluid where

the initial discontinuity* was and therc the density jumps up to c From the

initial discontinuity point to the shock, the density is pr. At the shock,

*This density discontinuity is called a contact discontinuity.
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Membrane

PZ9 Ot Pr , r

Figure 5a. Pipe Plot of Initial Conditions for SCTP-V

t

.Densit

arefactio Dniy qm
wave

- Con tant P ,v region

Left constant rnr Riht constant
PRgh consregit

Figure 5b. Eulerian Wave Plot for SCTP-V
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.Sokpt

Contact
Rarefactictn discontinuity path

ta

Fig~xre 5~c. Lagrangian Wave 11.0t

v

x5x

Figure 5d. Velocity plot
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P /Dotted line is
initial profile

P,

P m

4 I "x x x
Xc XR xS

Figure 5e. Pressure Plot

Dotted line is

initial profile

'I inta

II I -I
xc  XR  XD X S

Figure 5f. Density Plot
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the density jumps down from pmr to Pr which value is maintained all the way tc

the right. See figure 5f for a density plot. We will mention again that this

is a special case of the Riemann problem because in the Riemann problem, the

velocities are also arbitrary along with P V Pt, Pr' Pr' Figures 5a through

51 give graphic explanations.

b. Derivation of Solution

Assaue states m and r are connected by a shock facing to the right, i.e.,

P > P . By the conservation of momentum relation, (2:N2L), derived for SCTP-I,
-m r

(Vm-V = Pvm- P r

By the conservation of mass relation, (1:CM), derived for SCTP-I,

-i m
V V
r s r

m

orSo

amd

m P P

r m

By the Rankine-liugoniot relation, (5:RH), derived for SCTP-I, the V may be
Am

- eliminated to yield

2 2

-l-P
=M =m -E z

Vr

y+lr

73.

I!



SA

AFWL-TR-67-127

or Vr may be eliminated to yield

(y+l) P r (y-l) P

m2  r m2V
m

By (2:N2L),

P -p
Vm r

m r m

So,

V(m Vr (y+l) P", + (Y-!) Pr

Then

V= V + rM r r(M

and V v i+ 1r

Figure 5g is a plot of the possible Pr' v values for a shock facing to the

right when the right state r' v is prescribed. That is, it is a plot of

the right facing, right-specified shock relation for P, v which is

rr

So if P is determined, then v is determined bym m

v m v r (Pm)

In the analysis for SCTP-II, it was demonstrated that across a rarefaction wave

traveling to the left, the Riemann invariant v + a is constant (recall a - 2C/

y-1). That is, a rarefaction moving to the left is a Xt simple wave. Therefore,

v V + 2 (CZCc ) 0
z m 7 - C
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If the initial. stae was ......... , then

P m Pom)

since the changes in state in a rarefaction wave are isentropic. Combining

C2 =yPV and

PMm = Pm/

yields

.11

v

P r 'Vr) "

Figure 5g. P, v Plot for Right Facing, Right Specified Shock [
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So, for a rarefaction wave moving to the left,

v V 2 /\C
m z. Y-l \ M)

or

Vm yv -

If we define Y (P) as

1

2 -i / '\ 2 y [_ m

Y-1 Vyj [P

then

v m k PM

We summarize and review the action: In the shock tube problem, if Pz > P r a

shock will travel to the right and a rarefaction wave will travel to the left.

To the right of the rarefaction and the left of the shock will be a region

constant in pressure and velocity but having one discontinuity in density at

the point in the fluid of the initial discontinuity. Other than this jump,

the density is constant (it takes on only two values) in the middle region.

See figures 5d, 5e, and 5f. Proceeding from left to right, the density is p,

in the left constant wave; then it drops continuously throught the rarefaction

wave to pmz; then it jumps up across the initial discontinuity to p mr; then

it jumps down as it crosses the shock to p r If the initial discontinuity has

the Lagrangian label x = 0, then the line x = 0 in the Lagrangian, wave plot

is the path of the initial discontinuity. Therefore, the line x = 0 is the

path of the contact or tangential discontinuity. See figure 5c for the

Lagrangian wave plot.

Shock relation:

v M r + 0r( m)
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These two relations determine vm and Pm . The equation for Pm obtained by

IIequating the two right sides of the above relations is

2y/ E1 -
2V p y yJt

( P r) (y+l) P + (y-1) P Y-+ I m

or

or fory = 1.4,

1 1

]p PP t. FI Pd

m is determined by the isentropy condition

V S is determined by (5:RH):

or for 14

mrx rr -P

I P
P +F

-- e mr e r +--- 2 ~---r
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where

PVe -

The shock velocity is determined by the shock speed-pressure relation, (7:SS(P)),

derived for SCTP-i:

VS = V +Fr(2:Pm+1M-P

The velocity in the rarefaction wave linearly connects v = 0 to v as was

shown in SCTP-II. Then in the rarefaction wave,

2y

- - 1

2 C2,

27

as was shown for SCTP-II. The left side of the rarefaction wove is at

Xc(t) Xs(0) - c2 t

and the right side is at

XR(t) E x .(0) I- (c - vt

as was shown for SCTP-II. The shock wave is at

Xs(t) E Xs(O) + Vst

The initial discontinuity point of the fluid is at

XD(t) =X(O) + vt
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Solution summary:

Left
£ Region For X < XC(t), the values are P£, p9 , v

For XC(r) < X < XR(t), the values are

X x tC(t)
::Rt) _Xc(t)

v (X' t) =vm

i C
Rarefaction 2 £

" -
, Region

i2-y

! 
p ffi p (C ) y -

y2

P

For XR <__ X <X(t), the values are Pro vm

Middle For XR(t) X < X(t), the density is pmk
Region

For Y,(t) < X < Xs(t), the density is Pmr

Right S
Region For X > Xs(t), the values are Pr' Pr' vr

c. Application as a Test Problem

(1) Eulerian Input

(a) Initial values

For X < XS ( O) ,

if 79
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P 0.P.> 0-

V >0

For X < Xs(O),

P >0r

v = 0
r

P > Pr

(b) Boundary values

At X = 0, hold the values at P,, P,, and v£

(2) Lagrangian Input

(a) Initial Values

For X < X s (0),

o >0

v 0

For X > Xs(O)

P > 0

O~r>

V r
r
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N

(b) Boundary values

At x 0 0, hold the values at PCe o£, v)

(3) Numerical Values for SCIP-V

(a) SCTP-V-A

X (0) = 100 meters
-c S

AX - 1 meter

P = 108 dynes/ea2

9£ = 10-5 m/cm 3

i v9 = 0

-P = 104 dynes/cm2

S10- gm/cm 3

4P

rvr = 0

Right boundary at 250 meters

These imply the following values:

P M 1.888 x 107 dynes/cm
2

V 3.964 x 106 cm/sec
c m/c

PL ~3.040 x 10-6 gm/cM

0mr = 5.982 x 10-6 gmicm
3

4.760 x 106 cm/sec
VS-

The output recipe we used is: prirt out at time 1 x 10-4 sec, I x 10- 3 sec,

and 2 x 10- 3 sec.

(b) SCI'P-'-B

Same as A except

Xs(O) = 250 me-ers

P 10-6 gmicM3

Right boundary at 500 meters

These imply the following values:

-. 81
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P 4.610 x I0 7 dynes/Cn 2

v " 6.196 x 0' cm/bsec
m
Pm ' 5. 751 x i0 - 7 gm/cm3

Pmr = 5.992 x i0 - 6 gm/cm3

v S  7.437 x 106 cm/sec

(c) SCTP-V-c

Same as A except

Xs(O) = 250 meters

PI = 10-6 gm/cm3

Pr = 10-5 gm/cm3  j
Right boundary at 500 meters

These izply the following values:

p - 7.406 x 10 7 dynes/cm2

v -2.484 x ji0 6 cm/sec

8.070 x iO - gm/cm3

Pmr 5.995 x 10 gm/cm3

vs - 2.981 x 106 cm/sec

(4) Comments on the Computer Solution

(a) General

The %%riations A, B, C were made to explore the three

possibilities pL > or, = Pr" PI < Pr . The solution is good until the

rarefaction wave reaches the left hand bounda; or the right hand boundary.

At the last trime , e Ihave the active zcne situation as presented in table V-A.

(b) PUFF 1'

ACCURACY: On SCTP-V-A, the most noticeable error was a

smearing of the density discontinuity at X (see figure 5h). The only other

errors were the typical round unders and round overs at corners. (See

figure 5h and table V-B. On SCTP-V-B, there was a bit of oscillation in the
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Deusity

PUFF

xI

C XR XD XS

Figure 5h. PUFF Error Graph on SCTP-V-A

density in the compressed region and a little overshoot in velocity and an

undernhoot in pressure at X,. See figure 5i aid table V-C. On SCTP-V-C, the

dominant error was the overshoot in velocity as shown in figure 5i. The other

error was a slight undershoot in the pressure at XR. See table V-D.

Velocity

PUFF

-- .. ..

xx xXC R S

Figure 5i. Error Graph fcr SCTP-V
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TIMING: SCTP-V-A took 976 cycles and 61 seconds CDC 6600

CP time to run to 2 x 10- 3 sec. SCTP-V-B took 1527 cycles and 168 seconds CDC

6600 CP time to run to 2 x 10- 3 sec. SCTP-V-C took 611 cycles and 71 seconds

CDC 6606 CP time to run to 2 x 10- 3 sec.

I
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Table V-A

ACTIVITY TABLE AT TIME 2 x 10 - 3 SECOND ON SCTP-V

xc x
C  S

(meters) (meters)

SCTP-V--A 25 195

SCTP-V-B 14 400

SCTP-V-C 1.4 310

Table V-B

PUFF ERROR TABLE FOR SCTP-V-A

Problem time 2 x 10- 3 sac PUFF cycle = 976
Computer time = 61 sec Number of active zones = 202

Position of
Sum Sr. Err. Max. Err. Max. Err.

Pressure 0.0061 -0.0545 X
s

Velocity 0.0795 +0.875 X
s

Density 0.0271 +0.172 X
S

Sum Int. Energ Sum Kin. enery Sum Tot. Energy

EXACT 2.177 x 1012 3.232 x 1011 2.500 x 1012

PUFF 2.178 x 101 2  3.218 x 1011 2.500 x 1012
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Table V-C

PUIFF ERROR TABLE FOR SCTP-V-B

Problem time 2 x 10 - 3 sec PUFF cycle = 1527
Computer t±me 168 sec Number of active zones 405

Position of
Sum Sgr. Err. Max. Err. Max. Err.

Pressure 0M0137 -0.263 X
s

Velocity 0.4447 +0.748 X

Density 0.0306 -0,415 X
s

Sum Int. EneSX Sum Kin. Energy Sum Tot. Energy

EXACT 5.668 x 1012 5.834 x 1011 6.251 x ].312

PUFF 5.669 x 1012 5.814 x 1011  6.250 x 1012

Table V-D

PUFF ERROR TABLE FOR SCTP-V-C

Problem time 2 x 10- 3 sec PUFF cycle - 611
Ccmputer time - 71 set Number of active zones - 316

Position of
Sum Sar. Err. Max. Err. Max. Err,

Pressure 0.0282 -0.478
s

Velocity 0.0487 +0-701 X
s

Density 0.0360 -0.471 X

Sum Int. Ene~g Sum Kin. Energy Sum Tot. Enery

EXACT 6.005 x 1012 2.460 x 1011 6.251 x 1012

PUTT 6.007 x 1012 2.434 x 1011 6.250 x 1012
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4 €6. HYDROCODE TEST PROBLEM SCTP-VI

a. Description of Problem

This problex is the collision of two shock waves. Proceeding from left

to right, the values are P, p., v. connected by a right facing shock to Po,

p0 , v which in turn is connected by a left facing shock to P., Pr' Vr . As a

convenient convention, always take P > P Figure 6 gives a graphical
P-r

description.

b. Derivation of Solution

After collision, the pressure profile looks like figure 6d. Now by

the analysis in SCTP-V, v=vr + for a shock facing to the right andtheanayss i STP-, m = r + r m

similarly, vm - vk - *ZPm) for a shock facing to the left, where

Hugoniot relation, (5:RH), p mi and p mrare determined. Let

Bmm

and

mr Pmr

Thent by (5:RH),

(P'Vt- VM) P Pm

and

Thenly (:R 2

F +P

Let t c be the time of collision, X s(t) be the position of the left shock

prior to collision, i.e., t < tc, then
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PV vi Pt P v P P v0 o 0 r r r

Figure 6a. PipE Plot for SCTP-VI Initial Values

t 4j

Left shock after UI Path of the righthand
collisi~ ~ ~~c 4 hc0fe olso

Collision point-

;? o
0

C.0

x

Figure 6b. Lagrangian Wave Plot for SCTP-VI

Figure 6c. Pressure-Density Plot Prior to Collision
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A
8.

-£:s P s
~m

x r~

Figure 6d. Pressure Plot after Collision

x st (t) =Xst(0) + Vst

Likewise, let X sr(t) be the position of the right shock for t < t , then

X (t) = Xsr (O) + Vt

Let X* (t) be the position of the left hand shock after collision (t > t
St

then

-* (t + V*(tt

where X is the place the collision occurs, Likewise, let X* (t) be the:1Col paeocr ltsr
position of the right hand shock after collision; then

r)- +col S

For t < to,

X < Xs (t) implies the values are P, P£, vI

x s < X (t) implies the values are Po' Po' V0

SY, sr0 0

Xsr (t) < X implies the values are PI Pr Vr

For t > tC,

X < X* (t) implies the values are P., P0, v£

X*£(t) < X < Xco. + v t-t) implies the values are P v P

X + v t < X < X*r(t) implies the values are Pm, v Cmr
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X > X* (t) implies the values are Pr' v,'

srr

c. Application as a Test Problem

(1) Eulerian Input

(a) Initial values

For X < Xs (0), the values are

P I> 0

PL> 0

V >0

For Xs9, (0) < X < X sr(0), the values are

P >0

V =0C

For X > X (0), the values are*sr

P >0r

p >0
r

i v -
Vr

where

P >p >P

Give

P >0
0

P > 0

VO= 0
0

and one of the quantities P., vp : p, then all left quantities are determined.
Also give one of the quantities Pr, pr' Vr, and all right quantities are
determined. Therefore,
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P £ Pr > 0P
kv 

>I I 0
For example, suppose P and P are giver by (7:SS(p)):

~By 
(l: 'x) and (2:N2L),

v + V

v

1

V r v 0 1By ( 
a:cM),

p£ 
V 

s

V

sr

-v
Pr v srV) PO

(b) Boundary values

At X 0, hold the values at P., p, v and at the right
hand boundary, hold the values at Pr' v

(2) Lagrangian Input

(a) Initial values

Same as Eulerian just given

(b) Boundary values

Same as E'alerian. just given
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(3) Numerical Values for SCTP-VI

, (a) SCTP-VI-A

X = 1 meter
SX

s (0) = 75 %eters

Xsr(0) = 125 meters

and let the right hand boundary be at 200 meters initially

Po = 104 dynes/cm2

v 00= 0- gui/cm3

PO
V0

Ft 108 dynes/cm2

p 107 dynes/=m2
r

These values then determine the remainder of the values to be

p£ = 5.997 x 10 - 6 gin/cm3

Pr 5.97 x 10- 6 gm/cm3
ir

viz 9.13 x 106 cm/sec

v 1 -2.88 x 106 cm/secr

: A 1.095 x 107 cm/sec

v A -3.46 x 106 cm/sec

S3.468 x i0 sec

X a 1.13 x 104 cmcol
Pm & 3.66 x 108 dynes/cm2m

I 1.43 % I0- 5 gm/cm3

Pmr * 3.09 x I0 - S gm/cm3

v 4 1.96 x 106 cm/sec

3.75 x 105 cm/sec

v*  " 5.72 x 106 cm/secsr
A reasonable output recipe seems to be to print out at 1 x 10-4 sec, t_ 3.468
x 10- sec, and 7 x 10-4 sec.
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(b) SCTF-VI-B

Same as A, but P = P = 108 dynes/cm2 . This yields the

following values:

p pr 5.997 x 10 - 6 gm/M 3

r
v, = V 9.13 x 106 m/sec.

Vs -v " 1.095 X 107 cm/sec

1 tc A2.282 x 10 - 4 sec

X co l.00-x 104 cm

Pm 7.995 x 108 dynes/cM2

v 9.24 x 10-6 cm/sec

P mr 2.098 x 10 - gm/ci 3

-v* = v* 3.65 x 106 cm/sec
s2, sr

A reasonable output recipe seems to be to print out at 1 x 10-4 sec, tC
2.282 x 10- 4 sec, and 7 x 1 - 4 sec.

(4) Comments on the Computer Solution

(a) General

The solution should be correct until the shocks hit the left

or right boundaries of the hydrocode. Note that SCTP-VI-B can be interpreted

as the reflection of a shock wave off a wall where the wall is at the collision
position. Because of its symmetry, SCTP-VI-B gives a code symmetry test on

shocks.

(b) PUFF

SCTP-VI-A took 1283 cycles and 87 seconds CP time on the

CDC 6600 computer. The major errors in evidence were the spikes in the density

and internal energy. Hot-thin spikes resulted from the initial discontinuities
as we have observed before in SCTP-I-A. A cold-thick spike resulted from the

shock collision. See figure 6e.

SCTP-VI-B took 1500 cycles and 113 seconds CDC 6600 CP time,

T,. major errors were again in the density and specific internal eneigy. The

hot-thin and cold-thick spots occurred as in A. No asymmetries were observed.
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x*. x .x*Sz f ft'I Pr
X 1 XX

XD -XDr

Figure 6e. SCIP-VI-A Error Graph

See table VI for a tabulation of the errors at the final time, 7 x 1Oe sec.

See figure 6f. For tables VI-A and VI0-B, we define X£ and r to be the
?osition of the fluid particle which was initially at the left and right hand
shock positions, respectively. X£ and XDwill also be used in figures 6e

and 6f.
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Figure 6f. SCTP-VI-B Error Graph
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Table VI-A

PUFF ERROR TABLE FOR SCTP-VI-A

Problem time = 7 x 10-4 sec PUFF cycle = 1283
Computer time = 87 sec Number of active znnes 201

Posit -on of
Sum Sqr. Err. Max. Err. Max. Err.

Pressure 0.0392 +0.352 X*
sr

Velocity 0.0485 +0.514 X*
sr

Density 0.103 +0.640 Xcol

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 3.104 x .012 1.375 x 1012 4.480 x 1012

PUFF 3.126 x 1012 1.657 x 1012 4.782 x 1012

Table VI-B

PUFF ERROR TABLE FOR SCTP-VI-B

Problem time = 7 x 10-" PUFF cycle = 1500
Computer time 113 Number of active zones 201

Posilion of
Sum _r. Err. Max. Err. Max. Err.

Pressure 0.043.1 +0.332 X* and X*
sr s

Velceity 0.0700 +0.602 X* and X*sr sz
Density 0.0907 -0.516 X£ and XDr

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 7.832 x 1012 9.430 x 1011 8.775 x 1012

PUFF 7.882 x 1012 8.940 x 1011 8.776 x 1012
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7. I1DROCODE TEST PROBLEM SCTP-VII

a Desiption of Problem

'tkqo shock waves are traveling in the same direction which is taken to

the right. When two shock waves are traveling i the same direcrion, the one

behind will always overtake the one in front.

After overtake time, a rarefaction travels back to the left (for y < 5/3)

and a stronger shock travels on to the right.

Graphical representation is presented in figure 7.

Pki 02 v ~ z'jr' Pkr' v r P r' Or Vr

st Vsr

Figure 7a. Pipe Plot for Initial Values in SCTP-VII

I t
Rarefaction Contact discontintity

:1 wave

' Overtake point

Figure 7b. Lagrangian Wave Plot for SCTP-VII
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p

SS

x

Figure 7c. Initial Pressure Plot for SCTP-VII

p

R
YC -a S

Piu~74. ftr Overtake Pressure P~Iot for SCTP-VII

b. Derivation of Solution

Aftrx' overtak vm v r = v + r for the shock traveling to the right

and v = vi- Y(afor th aprefactioo traveling to the left. (rP,)iand

Y'i(PT are defined ir. SCI-V. From the above relations, V and P are deter-
mined, then V is d&ter Ined from the Rankire-Hugoniot relation (5:RH)

P +Pi
y I mr r (V V r ) mr,
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P is determined fron' the fact that the entropy does not change

through a rarefaction; therefore,

P£T ~V

P m Pm)

Let vs , X be the velocity and position of the shock after overtake.s s
Let v ,X and v sr be the velocities and positions of the left and right

shocks (defined only prior to overtake). Let (X0 ,to) be the poinr where over-

take occurs.

For t < to and X < X s(t), the raues are F£, v9, pt

For t < t and X s(t) < X < X sr(t), the values are P2£r' V Zr %r

For t < t and X > X sr(t), the values are Pr Vr, Pr

Or. the other hand, for t > to, in the region

., < Xo0 ' VC ) -to =_xc
the values are P , v, P2. In the region

3: X 2 m 2 Z) (t-t

The velocity v goes linearly from v I on the left up to vm on the right and

2

In the region

AR(t) < X < X + v t-t
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the values are Pm pt . and v . In the region
m im i

X 0 + Ym(-to) < x < X + vs(t-t)

the values are pmr' P m vm" In the region

X > + v (-t o

the values are PrI Pr ,v
r r r

c. Application as a Code Test Problem

(1) Eulerian Input

(a) Initial values

For X < X (0), the values are P
St *is vz3 P91

For Xs (0) < X < X sr(0), the values are P r' Vr' p

For X>X sr(0), the values are Pr Vr , pr

These values are determined when P r vr' Pr' and P, are given.

(b) Boundary values

At X = 0, hold the values at P, v£, p£

(2) Lagrangian Input

(a) Initial values

Same as Eulerian

(b) Boundary values

At X(0,t) = v t, the values should be P£, vz, pi

(3) Numerical values for SCTP-VII

(a) SCTP-VII-A

aX = 1 meter

X s(0) = 75 meters

Xsr (0) = 100 meters
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P r = 104 dynes/cm2
SPr = 10-6 9W/cm2

V r :0

SP 1012 dynes/cm 2

Right boundary at 200 meters
These values yield

c :1.97 x 108cm/sec

cm/secv "- 3,82 x 108 cm/sec

P -" 3.60 x 10 5 gm/cm 3

Svs " 4.56 x 108 cm/sec

v "r 1.095 x 107 cm/sec
sr

t 0 :11.683 x 10 - 5 sec
X 0 1.018 X 104 cmo

P - 3.32 x 1011 dynes/cm2

v 9.13 x 106g/
Vr " 6.1 x 108 cm/sec
Pir = 5.997 x 10- 6 gm/CM3

I v & 5.26 x 108 c/e

vs"6.31 x 108 c/e

Pm£ " 1.63 x io - 5 gm/cm3

Pmr -6.000 x 10-6 gm/cm 3

A reasonable output recipe is print at I x 10 - 5 , 1.683 x 10- S (time of overtake),
and 3 x 10- S sec.

(b) SCTP-VII-B

Same as A except

AX = I centimeter

4 SIZ(0) - 75 centimeters
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X sr(0) = 100 centimeters

Right boundary at 200 centimeters

A reasonable output recipe is pript at 1 x i0-7, 1.683 x i0- 7 (time of overtake),

and 3 x i0 - 7 sec.

(4) Comments on the Computer Solution

(a) General

The computer solution should be in agreement until the

rarefaction wave or the shock wave reaches a boundary. The difference between

A and B is just the scaling of the space mesh. This variation was introduced

to see what, if any, :hanges in the computer solution that space scaling would

introduce. It, of course, should not produce any changes in the computer if

the code behaves properly.

(b) PUFF

There was no discernible difference in the PUFF solutions

of A and B other than the scale change. They both took 1642 cycles and about

110 seconds CP time to run to 3 x 10 - 5 sec. Density-specific internal energy

spikes are the most noticeable errors. Hot-thin spikes were formed at the

initial shock positions and a cold-thick spike was formed at the overtake

position. See tables VII-A and VLI-B. In the tables, XD£ stands for the

position of the fluid particle that was at the left hand shock front at time

zero.
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Table VII-A

PUFF ERROR TABLE FOR SCTP-VII-A

Problem time = 3 x 10- 5 scc PUFF cycle = 1642

Computer time 108 sec Number of active zones = 201

IPosition of
Sum Sqr. Err. Max. Err. Max. Err.

£ Pressure 0.0151 -0.184 X

Velocity 0.0399 +0.467 Xs

Density 0.0301 -0.234 XD9,

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 9.374 x 1015 1.489 x 1016 2.426 x 1016

PUFF 9.370 x 1015 1.488 x 1016 2.423 x 1016

Table VII-B

PUFF ERROR TABLE FOR SCTP-VII-B

Problem time 3 x 10- 7 sec PUFF cycle = 1642

Computer time = 109 sec Number of active zones = 201

'osition of
Sum Sir. Err. Max. Err. Max. Err.

Pressure 0.0151 -0.184 X

Velocity 0.0399 +0.467 X

Density 0.0301 -0.234 XDZ

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 9.374 x 1013 1.489 x 1014 2.426 x 101"

PUFT 9.370 x 1013 1.488 x 1014 2.425 x 101"
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APPENDIX I

ON THE EQUATIONS MODELING LINEAR FLOW GAS HYDRODYNAMIC/

We are going to inspect the typical mathematical model vf an air-like gas;

that is, a gas which nearly satisfies the following characteristics:

- homogeneous

conpress ible

inviscid (nonviscous, no internal friction)

nonconducting (no heat transfer)

ideal or perfect equation of state (PV = RT = (y-l) e)

The terms _as and fluid will be used interchangeably in the following.

Consider fluid flowing in a frictionless, insulated pipe. Let us establish

some coordinate systems. We will label points in the fluid and call this the

Lagraugian coordinate system. We will label points on the pipe and call that

the Eulerian coordinate system. Stated another way, the Lagrangian coordinate

system is fixed in the fluid and the Eulerian coordinate system is fixed on the

pipe. As to notation, x will be used as a label for the fluid points and X

will be used as a label for the pipe points.

Let A be the cross-sectional area of the pipe. A is taken as a constant

independent of X and time. Also, :he cross-sectional shape is taken as a

constant independent of X and time. Therefore, the pipe and the fluid may be

thought of as one-dimensional continums, i.e., topologically equivalent to

some interval of the real i..e, e.g., the unit interval from 0 to i. This is

because in any cross section of the fluid perpendicular to the %xis of the

pipe, all the properties of the fluid are constant, e.g., fluid velocity,

density, pressure, etc. The foregoing defines what we mean by linear flow.

Consider the mass m of fluid between the fluid points labeled x - Ax and

x + Ax. This mass is constant because x - Ax and x + Ax are the labels of

fixed points in the fluid (not necessarily fixed with respect to the Dipe) and

we are demanding the conservation of mass. Let X(x,t) denote the Eulcrian

coordinate at time t of the fluid point labeled x. Often X(x,O) = x is taken
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*as a defining relationship between the fluid labels and the pipe labels. We

; will follow this convention. Likewise, p(x,t) will denote the mass density of

the fluid at time t and at the fluid point labeled x.

P(xt) > 0

Let

(X(x,t),t) = P(x,t)

i.e., p is the density in the Evlereian coordinate system, whereas p is the

density in the Lagranglan coordinate system. The mass between the fluid points

labeled x - Ax and x + Ax at time t is defined by

X(X+ax,tr)

m A o(X~t)dX

X (x-&', t)

Now at time t = 0,

x+fx

A p(x,O)dx

x-Ax

Therefore, by conservati a of mass,

x+Ax X( -+Ax, t)
r

" P(xO)dx p(X,t)dX

x-Lu x(Z-x t)

Let us mcke a change of v-ariab'es; then

X(7+A,t )  x+,&x

p(x,t)dx - p(x,t) - dx
ax

X(x-Ax,t) x-Ax
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. So, we have

x-?Ax X+AxS pxO)dx p(:,t) !X dx
Sx-Ax x-Ax

Therefore, under differentiability assumptiovs, the integral equation can be

expressed by the following differential equation:

axP (x,O0) N= pxt) F= <x, t)

This is called the conservation of mass ea" ion.

The velocity, v(x,t), is defined by

ax

v(x, t) = (x,t)

Newton's second law says that the sum of the external forres applied to a

rigid body is equal to the time rate of change cf momentwi of the rigid body.

I Consider the interval of fluid between the fluid points labeled x + Ax and

- Ax. This fluid interval is not a rigid body. However, the law still

applies to this body if there are no internal fticticnai forces jn the fluid.

In the case of internal frictional forces ix the fluid, we must modify Newton's

law to say that tle external force applied to the fluid interval is equal to

the internal fric~tional forces plus the time rate of change of momentum. We

now postulare that our fluid model has no internal frictional forces. Such a

fluid is called nonviscows or inviscid. The external forcs (taken as positive

when in the direction of increating x) on the interval at time t is

A(P(x-&x,t) - P(x+Ax,t))

The momentum of the body at time t is

X+Ax

A 5p(4,O) v(it)d
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Thus, Newton's second law yields

x+Ax t+At

P( ,O) (v(C,t+At) - v(r,t))r -Ax, - Plx+AxT))dr

x-Ax 4

Under differentiability assumptions, this integral equation may be written as

the following differential equation:

Do v aPP(x,O t- x, t) - - (x,t)

This is called the conservation of momentum equation.

Now wL, will see whal: relation the principle of energy conservation will

produce. Let E(x,t) be the specific energy at point x and time t, i.e.,

x - Ax, x + Ax at time t is

x+Ax

A p(x,O) F(x, t)dx

x-Ax

Tie conservation of energy principle states that the increase in Lze total

erergy of an interval is equal -o the work done on the interval plus any energy

in the form of hear which is transferred to the interval. We now postulate

that there will be no heat transfer in our fluid model. Therefore, energy

conservation in our model is expressed in the following way:

x+Ax t+A t

P(x,O) (E(x,t+At) - E(x,t) dx P(x-Ax,T) v(x-Ax,T)

x-8x t

P(x+Ax,r) v(x+Ax,'r)dT

Jnder differentiability assumptions, this integral equation may be written as

the following differential equation:
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'CE0 (x,) 0 P (x, 0at- ax

This is called the conservation of energy equation. The total energy is

composed of the internal energy and the kinetic energy. This is expressed by

E(x,t) - e(x,t) + 1/2 v2 (x,t)

where e(x,t) is the specific internal energy. (This could be thought of as

the defining equation for e.) This relation says that the total specific

energy is the sum of the specific internal energy and the specific kinetic

energy. Using the three foregoing conservation equations, we can derive the

following relation:

ae V
0 2e + P 2V-

at at

The laws of thermodynamics say TdS - de + dW, and in our fluid model, we

postulate that all work is PdV work (this postulate may be provable from the

homogeneous fluid postulate). So the equation

- ae + V
at+ at

says that the entropy is constant for each x. This is called an isentropic

process. This process is not necessarily homentropic.* We postulate the

so-called perfect or ideal gas equation of state PV = RT = (y-l)e where R and

y are gas constants and T is the temperature. If we are not undergoing a

shock transition or passing through any -ther discontinuity, then PV = (y-l)e

and TdS = de + PdV (the first law of hydrodynamics) yield

P w

*In general, S(x,t) is constant in neither x nor t. If it is constant in t but
not necessarily in x, then we say the process is isentropic. If it is constant
in both t and x, .'hen we say the process is homentzopic.
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where

CV T
V const

, p __ dQ

dT P const

Cp'P
Y=C .

and R (y-1)Cv

And if 0= de + PdV, then

Pe Y

Hewever, for a fluid interval passing in time At through a shock traveling to

the right where the pressure on the left is P and on the right is Pr we have

t+At
TdS = e e + P v - P

t

as was shown in the shock relations discussion in SCTP-I. Using the shockm- ~~~+ P~ £ - Pv > O. T e e o , h re s
relations, we can prove that e- e r + - Prr > 0. Therefore, there is

an entropy increase across the shock! But we just "proved" by using the three

conservation equations that the process was isentropic! How did this contra-

diction arise? it arose through the assumption that all quantities were smooth,

i.e., ti " the quantities in the equations

V a x (conservation of mass)
V ax

0

-2X 1 aP (conservation of momentum)at2  P° 3x

_ I Pv (conservation of energy)
at P 1x
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were defined. B'it they are not defined across a shock for there E, P, V, v

are discontinuous by the definition of a shock. (Notice that the derivation

did prove, however, that when the flow Is smooth, it is isentropic.) Another

mistake that is sometimes made is in using the first law of thermodynamics,

dQ = de + PdV, and the statement that the process is adiabatic (no heat transfer)

to arrive at the relation 0 = de + PdV. The error in this argument is that dO

is composed of twc parts, dQ internal + dQ external. Saying that the process

is adiabatic is saying That there is no heat transfer to or from the system,

i.e., dQ external = 0. But there may also be internal friction in the fluid.

If there are internal frictional forces acting, then dQ internal > 0, so that

dQ > 0 when dQ external = 0. When dQ = 0, the process is isentropic, for the

entropy is defined by TdS = dQ. But it could happen that the process is

adiabatic but not isentropic, i.e., dQ external = 0, dQ internal > 0. And it

could happen that the process is isentropic but not adiabatic, i.e., dQ internal

> 0, but dQ external < 0 and also dQ internal + dQ external = 0. Thus, adiabatic

and isentropic are two entirely different processes, Our no-heat-transfer

postulate implies that we have au adiabatic process in our model, i.e., dO

external - 0. But we have shown that our model is not isentropic when shocks

occur. And we have assumed that the fluid was inviscid. The three previous

statements are contradictory. Proof: The entropy increases across a shock;

therefore, dQ > 0. The process is adiabatic therefore, dQ external = 0.

Ht nce, dQ - dQ internal > 0 across a shock. Therefore, there are internal

frictional forces acting. This is a contradiction since we assumed the fluid

tc be inviscidl Thus, the postulates assumed for our model are contradictory.

Let us review our principles and postulates:

Principle of conservation of mass

Principle of conservation of momentum

?rinciple of conservation of energy

Principle of monotone increasing entropy

Postulate of homogeneous fluid

Postulate of comp'-;sible fluid

Postulate of nonviscous fluid

Postulate of nonconducting fluid
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Postulate of ideal equation of state

Postulate of dW = PdV

To produce a self-consistent model, we must throw out or modify some of the

postulates. The criteria for this remodeling will come from a closer look at

what we are trying to model. So, let us have a closer look at air. The best

resolution of the dilemma seems to be to recognize that the fluid we are trying

to model has a very small viscosity (it also has a very small heat conductivity

but the more satisfactory resolution seems to be in the modification of the

inviscid postulate), and that this viscosity is not appreciable except at the

places that a2v/aX 2 is large. The inclusion of viscosity prevents the occurrence

of shocks. The internal frictional force depends on the product of the vis-

cosL-Y number and ,2v/DX 2. Thus, the entropy increase depends on this product.

As the viscosity number goes to zero, a2v/aX2 can become larger and larger und

apparently the limit of the product is finite but not zero. So, we effectively

have an "implicit point viscosity." That is, the viscosity effect (entropy

increase) is felt only at points where a2v/aX 2 i: infinite, i.e., at shocks.

The object of the remodeling is, therefore, to define the solution of the litrit

to be the limit of the solution of the equations including the viscosity as

the viscosity goes to zero. So we alter the inviscid postulate to "the fluid

is inviscid except at shocks and there the viscosity effects (entropy increase)

are those described by the shock relations." Notice that the erroneous deriva-

tion of 0 = de + PdV can lead to a success for shocks if it is differenced like

the Rankine-Hugoniot relation. That is, the Rankine-Hugoniot relation is

P +Pr

0 -eZ er  2 r -Vr

And if the difference scheme used were

Pn+l + pn
n+l n I_____1_n)2 - + 2

n 2
where eI is the approximation to e(nAt,IAx), then the difference scheme will

be correct across shocks. But it does not conserve the entr,py in nonshock
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regions.* It also does not explicitly conserve the total energy. Suppose we

wish to write the equations in terms of the (X,t) system instead of the (x,t)

system. That is, suppose the Eulerian formulation is desired instead of the

Lagrangian. The transformation from the Eulerian system to the Lagrangian

system may be expressed in this manner:

bein h ) X iis(,t

at at a ax1 a 1 DX in (X,t)

" Bin (x, t)_. i4 0 inX-t U Xt

I-o X1,O) x"

The first relation follows from the chain rule and expresses the so-called

convection derivative, The second relation just expresses the conservation of

" - mass

I p, ax

The Lagrangian formulation is

_ _ aX (conservation of mass)
V 0 ax

ax (definition of velocity)

av 1 ap
at P0 ax (momentum conservation)

BE 1 aPv (energy conservation)

0a)t P°

E = e + 1/2 v2  (definition of internal energy)

e V1 (equation of state)
e =__-_

*As a matter of fact, for p n+/pn near 1, the entropy ecror is AS -Cv(y-1/2)I (-p.n+l/pn). Ths ehv n"entropy increase" if on+I
_P < r and an "entropy

Thus, we have an "etrp inrae aninfetrp
decrease" if pn+l > n

113



I

AFWL-TR-67-127

The conservation of mass equation will not transform satisfactorily as it isbecause X is to be an independent variable in rhe Eulerian formulation. So itis expressed in terms of the velocity by taking the time derivative of both
sides-

av 1 Lv
at P ax

Notice another differentiability assumption is required here; the transformation
yields

av + ax av Iav
at ax p ax

Jv BX 3v 1 P
atat ax a

3E aX E 1 P v
at at ax P ax

And, of course,

v axr a t

go the Eulerian formulation is

8V aV I 2
Tt ax P ax

av +av 1 P
at ax p ax

aE aE 1Pv
at + ax P ax

and

E 1/2 v2 + PV

y-i
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1. Method of Finite Differences

For illustrative purposes, we are going to use a linear approximation to
the hydrodynamic equations.

The equations describing an isentropic flow may be written (see Appendix I):

P0  DX

32X 1 aP
7 p ax

To - kp

where

P
0

Y
p0

and

Po p(xo)

P P(xo)

i So,

and

_ 1 a p( a\ -Y3xP- + YP ;x -Y+1) 32x
Po \ o  "-20  0

Therefore, using

P. ax- Y'P 0 (a)

again, we have

y+l
32X I P p 0, YP (_Y 2-57 0o P ax 4+ PO P 0 D 2x

o0  11 o x

: 116
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Under the assumptions that

x (x,o)

is near zero and P/P is near 1, the above equation is approximated by

0P

-'ii2 ~ o 2

Bt2 po ax

, c2 (

o 0o

; C > 0

o

' ~C T is called the ambient isentroplic sound speed ere

C a= C(xO)

but we will take it to be a constant for simplicity in the succeeding illustra-

the wave equation. If central differences are used, the difference equation

for the wave equation is

Xn+l _ n +n-l Xn _ 2Xn + n
I I I 1+1 1 1-1

t 2  =o Ax2

where XI soapproximate X(IAx,nit). That is, XI is the solution to the

difference problem at the mesh point (n,I) which is the point (nMt,IAx) inn

the tx plane and, therefore, XI is the difference solution which will hopefully

approximate X(IAx,nAt), the differential solution. At this point, e pose a

question known as the Convergence Problem: Will the solutions to the Jifference
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problem, XI, converge to the solution to the differential problem, X(x,t), asAx, At - 0? The answer to this problem in the linear case depends upon a
number, p, known as the Courant-Friedrichs-Lewy number

C A

Ax

If .< the answer is yes. Sometimes ?f is referred to as the CFL number.
It is called this because the answer to the Convergence Proble, in the linear
case was established in Courant, Friedrichs, and Lewy's 1928 MATH ANNALEN paper.
John von Neumann made a conjecture that generalizes this result to the nonlinear
equations. It is essentially that if

CAt

for all x and t %. (x, t)) then convergence would prevail in the nonlinear

(C --- _^

case also. This conjecture has not been proved. Experience indicates that
it is reasonable and this is the condition used in current hydrocodes with
only slight modifications, The foregoing difference equation may be arranged
in the following form:

' 2

I I + I+I 1 + -1

or

x I( 2 -29.C.I x I + 2 (XI+1 + x 1 1 )(3
iI

In this form, the difference equation can be solved in a "time marching"
manner. That is, givnn the values of X Xn for L < I < R, we can solve

'n+lfor the values of X, for L + 1 < I < R - I. Suppose we "solved" this
difference equation or. a machine which introduced round-off errors, That is,if we have a machine that has only a finite number of digits in its numbers,
then it will make round-off errors in computing

x(22 )  n- + n
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We denote this round-off error by zI" We dcnote the machine soluticn by X(n,!).

We denote the total devition of X(n,I) from X by AV

A r (njI - xn

Now we pose a question known as the Stability Problem: Will the round-off

errors

m
c. I < m < n

n
introduced in the machine solution cause X(n,I) to drift so far away from XI

as to be useless as an approximation? As a first attack on the stability

problem, we ask: If a single perturbation cM is introduced at the mth cycle

and the resulting solution (with no other errors or perturbations introduced)

is

xI +[ then does 6n(m) grow in time (i.e., with increasing n)? Sometimes the terminol-

wogy "eak stability," "strong stability" is used in regard to the last two

questions. That is, if the answer to the single perturbation question is no,

then the difference equation solution is said to be weakly stable. If the

answer to the ctability problem question is no, then the lifference equation

solution is said to be strongly stable. Let
A, _: X t~n,l) -n

n+1 n-l

for n = 1, 2, 3, Let 6 1 be che propagated error due to and
Then

n~l n1 n n 2) nl + Al)

+ ( + A 2 ( 2-2 + + An

I
+ 2 Xn+ + ni+ Xn_ 1 + A -

Subtracting the unperturbed equation (i.e., equation (3) which was
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= ~ -~ I * X + I- 1)

yields

6n+l A _(2-2) n- + 2 n n

If A, n1 are just prcpagated errors themselves, we could write

This is called the equation of first variation of equation (3). It is the

equation for the propagation of perturbations of equation (3). Notice that the

equation of first variation of equation (3) is the same equation as equation (3).

That is, the equation of first variation of the wave difference equation is

again the wave difference equation. This is always true for linear difference

equations. Proof: Let

L[X+61 = L[X] + L[61

by linearity. So that

L[X+6] - L[X] = L[6]

Therefore, the equation of first variation is

L[6] = 0

Note that in the equation of first variation, the introduction of new round-off

errors is not taken into account. Thus, including the total round-off error

at the last step, n+l , the total error at cycle n+l is

'5n+l + l+1
I I

n+l
and this is by definition A T; so

hn+l =n+l + n+l
I = I l

That is, the machine solution is
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X(n+l,I) X + 6n + EI  = I  +

Now we ask if there is some restriction on At and Ax such that the propagated

errors do not grow. The answer to the Stability Problem question turns out to

be the same as the Convergence Problem question, i.e., f _ 1 is the condition

on At and Ax. That the answers should be the same is plausible from this point

of view: The differential and the machine solutions can both be considered as

perturbations of the difference solution. Then a necessary condition for boch

convergence and stability is that perturbations do not grow unboundedly in the

difference equation. The condition yields the result that perturbations

do not grow.

We will now look at John von Neumann's method of analyzing the perturbation

growth or error propagation problem. Consider the propagation equation

n°l n -1 2 (n

6 f,(2-2) -l+ 2(+ +6 )

The solutions to this equation may be written in terms of a Fourier series.

A typical term of the series being

k at

where k is an integer. We pluI this term into the above difference equation

and soive for a in terms of

ak e xI = ak e e (22 - ak e a(n-I)At

a e (ak e e +keent

< + (ak eik~x(l+l) e anAt + a_ e ik"6(!-i) ean~t)

or

e~t (2 ) -a t + -'(eVx +jiAx)

So we have a defined implicitly as a function of k and . We can prove that
2 2

if < i, then the real part of a is < 0. Therefore, for < < I. the k

frequency component of the solution to the error propagation equation will not
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grow in time (because the k frequency component term is ak e ikx e at This
holds for all k.

The condition < 1 implies 1 ! 1 which is

C At
< 1

This condition is known as the Courant or Courant-Frtedrichs-Le. - or CFL

condition. It is the condition for both convergence and stability of the wave

difference equation.

The condition

C At0
has a geometric interpretation in terms of the domain of dependence of the

solutions to the differential and difference equation. If the initial data

are given at time zero as X(xO) and

d__. (x,O)

then the solution to the wave differential equation is given by D'Alembert's

formula:

x+C t

X(x,t) = 1/2 (x-C tO + X(X+C o tO) + ' dX (&,O)d)

x-C t

--bus, X(x,t) depends on the initial data given on the interval

[XCo0 ,X+Co0ti

We may graphically describe the points that X(x,t) depends upon in figure A-i,
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Dependence (xt)

x-C t _P _ _ _OP_)cc,_o

t

Figure A-I. Domain of Dependence Graph for the Differential Solution

Analogously, the domain of dependence of the difference solution X n is

graphed in figure A-2 and is seen to depend on the values

X0 for - n < i < nX+i

and

1 for - n + 1 < i < n 1XI+ i  -

The CFL condition

C At
0

Ax -

requires that

At- > C o

This says that the slope of the bottom line should be greater than or equal

to C and the slope of tne top line should be less than or equal to -C . Super-1 00
imposing the two graphs in the case Ax/At > CO yields figure A-3.
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x

I+n AN

I+n *** (x, 0 (IAY,nAt)

In~I-n +

x
I-nY.'

ry.i

Figure A-2. Domain of Dependence Graph for the Difference Solution

x

dx Ax

I dt t

dx

dt 0

dxc 0
dt 0

d dx A Ax
Lit

"CoC

Figure A-3. Relationship of the Domains of Dependence
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It is seen that the stabilit, candition require: ti it the domain of depend-
ence of XI "overlap" th- domain c, dependence of X(nAt,IAx). In other words,

X. should depend upon ac least is nn hI information (in the limit as Ax,At 0)
as X(nAt,IAx).

At this point, we will explore a little farther 4 into the parallel between
the convergence problem and the stability problem. ro reveal this, let us
consider X as a perturbed solution of X(nAt,IAx). (On the other hand, X(nAt,
Iax) can be thought of as a perturbation of X1). That is, in the stability
problem, the machine solution is a perturbed solution of the finite difference
problem and the perturbations are the machine round-off errors. In the converg-[ ence problem, the perturbations are the deviations made In each cycle by using

S[ tie difference method to advance to the next time level instead of the
differential equation. To indicate the parallelim. we will redefine n n

as follows:
II

n X(nAt,IAx) - XnI - I

n the error introduced In proceeding to time nat from time (n-!)Atvia the difference equation rather than by the differential

equation

6 (w) E the deviation due to the propagation of em by the differenceI ,; equation

To give a precise equation for n and 61 (l), we need to select an interpolation
process in space and time to "fill in the gaps" between the Xn. That is,define a function Xt such that Xt = km (where t= mt and x I~x) for m n
and such that

axC
x
at

exists and is an approximation to

Xn Xn-1

I -x I
At

and Xt is defined also at all real x between the lAx points.x
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One of the nicest ways to interpolate in x Is to use the difference
equation itself to fill in the gaps, That is, to determine Xn t , set up the

x
original -.esh so that for oome I, x = IAx, then solve the difference equation

for X then set

~nAt nx XI

This can be visualized as a translation of the mesh of the difference solution

in the space direction. To do something similar in time could be accomplished

if we were given a "band of initial data" r3ther than a line of initial data,

that is, initial data from t 0 to some t > 0. Then we could do a "time

direction translation" of the mesh to determine X . Perhaps a more practical
method (because we are not normally given an initial band of data) would be to

vary the initial time step in such a way as to produce a time direction trans-

lation of the mesh. That is, to define X t let the initial time step be

t -At •I ( )

(where GI is the gratest integer function). Then let At be the timestep

thereafter.

So, assume X is defined. Then, using D'Alembert's formula, the advancen  o n + 1 x
from X~ to X via the differential eauation yields

X-C At1 1

X*(t+at,x) -t + x t + I at

0 0 0X-C At

Tnen

e n+1 .X*(t+At,x) - Xn

(where t = nAt and x lAx) and then n+1 (m) is the propagation of aI by

equation (4). We 1now that tt1s condition for the 6n(m) not to grow in time

is that - I. So this is a necensary condition for convergence as well as

for stability. In view of the geometric interpretatlou involving the domains

of dependence, this is saying that it i necessary that the dlfference problem

take into account at least as m.uch information (initial data domain-wise) as;

the differential problem if it is to cnverge to the differential solution.
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A physica: interpretation of the

C At
0- <
Ax -

constraint is to consider the difference equation as a model of the signal

prpagation process and to interpret the constraint C° At Ax s due to the

g fact that the difference relation only takes account of the interaction between

I adjazent zones and so the time step must be restricted so that signals cannotI : [flow from, say, zone I to zone I + 2, but that only the signals from zones I + 1
[and I - 1 may reach zone I in one time step.

It turns out that the condition < _ I is also sufficient for convergence.

For proof, see the CFL paper. For a more general convergence proof for linear

problems, see Lax's Equivalence Theorem in Richtmyer's Difference Methods for
Initial Value Problems, We will give here the proof for convergence -ilien : =

because the proof is illuminating. Since

Xn+' . n - + + (~)n n nX~II 2 I+l I Xl-1 I+i XlI

when 1 1, this becomes

Xn+l xn xn-! + n
I I+1 - I I-1

One can see thac the solution is

2n

Vn IKi v ci i
-I 1 d "I-n+

where

Ceven 0

odd '-1

and X0 and X-1 are the initial conditions. The foregoing equation may te

rearranged to
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0 0 n-i +X 0~tn2+ -+i -
x + X' +

1 2 2 xI-n+2i+1
i=O

By D 'A1embert's formnula

X+C t

X~~2 (X(0I"-Ct) + X(OsX+Ct)) + -I- jo X (O,x')dx'
2C0X-C t _

0

This may also be written

X(nAt,IAX) O~ xn At (~i1~C)

2C(X 0 +X,)dx A)

Or uingC A~ i mi. ewrirenIt~x-nC tt00

2C J ~- (O,x')dx'

0 (I-n) At

0~

(I4-n) xjO

+ 12
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because the , is a , A X and if we mtltiply by

= we get

which is
C X At

0

C At Atf 2Ax

tAx 2 C c it (O,x 1 )dx'

A % 2Co 0 1 od

0

but in this case

C At

= +X

So, as At,Ax - 0 with 2= , then Xx)

Moreover, the difference solution will yield the exact solution to the differ-
problem if xl defined properly w= . It is desired that

x +x

XI+1 XI-i _ -I

I should approximate
x+C At

0Ax

So as (,.1n.)dx,

2
I rX-C nt
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If, a.ter defining Xo X(0,IAx), we define

0 IAx-C At
X l2 a -X (0,X')dx'

then,

nlX0+ X lAx-nC 6t
z' I-n+21+2 I-n+2j -X1 0

=02 I-n+2j+l = 3 , (O,x') dx'

•-IAx-C 6t

by the additivity of the integral. So the dJifference solution is exactly the

same at all points oi the grid. At this T eint, one can make an interesting

observation: By the proofs in the CFL paper, the difference solution converges

to the differential jolution for < 1. But the solution to

Xn+l X+ n Xn-I + X l
I "I I1

converges to

C40

-- X E--+jl= __BX (O,x') dx'
2 t) 2C C at

For < 1, this amounts to a "smoothing" of the true solution. T actual

equation is

(.2)Xn+l n n-n + n

S, X + X 2X X XI
x1 1+1 I 1X

n eqano nis

---- X~l -l -i----- I---.i- -"--.2----l 
+----- x -~-' --

X, X i+i 2X!X-i

. _. 13G
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Dropping the , 2 i A2 Xn term when < 1 is like adding its negative

which we will denote

A A2 Xn

where

S 1 - 2 > O

If the solution to

n xl1 =n ~n-l + 1 ( 2. )n ~ 2 n +nXI  Xll- XI  X + - 1) Xl+ 2 X I+ I
I I'-l + 1 I 1-1

+ X A2 Xn for 0 < X < 1 2

x I - V

is a continuous function of X, then the solution varies from the exact solution

at X = 0 to an evidently more and more smoothed solution as A grows. Thus,
the X A2 Xn term seems to have a smoothing effect reminiscent of the viscosity.

I x I:
One might guess that as a function of X of the solution being converged to
would be like

x(t,x) ,)+X O,x + - t

Ct
0

1/1-
2Ca (Ox')dx'I I- -

since -- 3 .
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2. Methods of Lines

if, In the differential equation,

=2x C2 a
2x

we difference only in space, we would have

a2X (t) 1+1(t) - 2x (t) + XI_l(t)

Then we have a system of ordinary differential equations. Getting approximate

solutions to the partial differential equation by solving this system is called

the Method of Lines.

3. Method of Characteristics

In Section II in the discussion of !CTP-II, the-method of characteristics

is discussed. For a discussion of a computer program to solve problems by

the method of characteristics, see the report SC 4796(RR), "SWAP--A Computer

Program for Shock Wave Analysis." For a discussion of the relative utility

of the characteristic method and the fin diff method, see "On the Numerical

Solution of the Hydro Equations" by Fyfe, Eng, and Voung (Siam Review, Vol 3,

No. 4, October 1961), in which the conclusion is: Method of characteristics

is good for relatively simple problems. But for problems not so simple, the

method of finite differences is to be preferred. Moreover, some problems are

too complicated to handle by the Method of Characteristics.

4. Analog Methods

An electronic analog computer could be used to electronically solve the

system by the method of lines, for example. Other analog techniques might be

based upun the analogy between shallow water behavior and gas dynamics

behavior. The use of wind tunnels is an Analog Method also.

5. #ybrid Computer Methods

A hybrid computer is a combination of analog and digital computers. For

a report on this, see AFWL-TR-65-165, "Development of an Automatic Device for

Solving Continuum Mechanics Problems."
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'~ APPENDIX III

I ~ERROR FORMATS AND ERROR FUNCTIONS

The first thing to be determined when testing a code is at precisely what

time and place variables are computed by the code. Example: In PUFF, velocity

is computed at the zone boundary, but density, pressure, and internal energy

are zone center quantities.

I ~ Also, velocity is one half of the time step behind (timewise) the other

I ~ variables in PUFF. When gradients are steep and fast moving, a: in shocks,

errors of 5 to 10 percent can easily be made by not plotting the variables at

the correct time and place. Example: If one should plot PUFFs zone center

quantities at zone boundaries and plot PUFF's velocity as if it were at the

same time as the other variables, errors of 5 or 10 percent may be generated.

It is convenient to introduce the term 'primary variable." By this, we

mean a variable that the code actually computes in its cycle advancing routine.

Example: In PUFF, the primary variables are X, the zone boundary position;

D, the density; S, the stress or pressure; E, the inLernal energy; V, the

velocity. Now, from these we can compute other variables such as momentum,

kinetic energy, total energy, etc.

Those nonprimary variables which may be computed from the primary variables

will be called secondary variables.

We wish to develop an "error function." This error function is to measure

the "distance" between the exact soluti.on and the code's solution. That is,

it is to give us a number or numbers indicative of the "closeness" of the

coae's solution to the exact solution.

This question arises: What should the error function depend on?

In answering this question, the following point should be noted: If we

check the error, for example, in momentum in PUFF, we must make an interpola-

tion decision because momentum is the density-velocity product and PUFF

computes these primary variables at different places. For this reason, we

have answered the error function in this way: The error function should

depend only on primary variables at the points in space and time where they
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are computed; that is, only at zone boundaries for velocities and only at zone

centers for density, internal energy, and pressure; also, only at those times

these variables are computed. This eliminates interpolation decisions.

Now actually, PUFF's value at these points is supposed to be the average

over the half zone to either side of the point (be it zone boundary or zone

center). But the comparisons have all been made with the value of the exact

solution at that point. Perhaps it would 'ive been ,aore fair to PUFF to take

the exact solution and average it over the region composed of the half zone

to the left and the half zone to the right and then compare this average with

PUFF. But then the difficulty arises that PUFF may have made an error in its

zone boundary positions. So, do we average over the region PUFF is averaging

over or over the region the exact solution indicates we should average over?

We have answered the error function question by providing several numbers

and graphs. We have provided the maximum error numbers, sum square error

numbers, graphs indicating the characteristic and outstanding distortions,

etc. We normalized the maximum error number and the sum square error number

by dividing by the maximum absolute value of the variable taken on in the

exact solution. The "point function" variables in PUFF which we check are

the primary variables of PUFF, i.e., D, E, U, S, X. The other variables

checked were the "set or interval functions" which were total energy, kinetic

energy, and potential energy.

We now give precise definitions of the sum square error numbers and the

maximum error numbers. Let f be the value of PUFF or whatever code is being

IItested. Let f 1 be the exact solutions value at that place. Let N be the

number of places or zones which are involved.

N

sum square error N max Ifl1

N<I<N

In PUFF, N is the number of active zones (JSTAR+l in PUFF).

max f f1

I<I<N I
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where I is such that

f -f ma-lmax-Imax = max i laxi< IL<N

(It is possible that there could be more than one I If so, the program

chooses the larger one.)
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APPENDIX IV

SUMMARY OF PUFF TEST RESULTS

PUFF's errors might be categorized into overrounds, underrounds, overshoots,
undershoots, hot-thin spikes, and cold-thick spikes. These may be further
broken down into compression overrounds, compression underrounds, rarefaction
overrounds, and rarefaction underroundi. For graphical description of these
distortions, see figure A-r. The hot-thin spikes occur where there are shocks
in the initial flow. The cold-thick spikes occur at shock collisions or shock

overtakes.

S R

Compress ionaction
underround Compression Rarefaction underroundm_ r== /,v e rr ou n d  over round.,,

,%*-Rarefaction overshoot

Rarefaction undershoot

Figure A-4. PUFF Errors
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We will now list some examples of these errors.

Compression overround in P, v, p, e in SCTP-l, SCTP-IXI

Compression underround in P, v, p, e in SCTP-I

Rarefaction overrournd in the pressure SCTP-V-A

Rarefaction underroisnd in P, v, p, e in SCTP-II

Rarefaction overshoot in the velocity in SCTP-V-C

Rarefaction undershoot in P, v, p, e in SCTP-II-A

IL Hot-thin spike in SCTP-I, SCTP-VI, SCrP-VIT

Cold--thick spike iii SCTP-VI, SCTP-VII

The pressure and velocity are the best behaved variables in PUFF while

the density and internal energy are the worst behaved.
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